版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球从袋中任意摸出一个球,是白球的概率为( )ABCD2如图,在平面直角坐标系中,点P在函数y(x0)的图象上从左向右运动,PAy轴,交函数y(x0)的图象于点A,ABx轴交PO的
2、延长线于点B,则PAB的面积()A逐渐变大B逐渐变小C等于定值16D等于定值243如图,已知二次函数y=ax2+bx+c(a0)的图象如图所示,给出以下四个结论:abc=0,a+b+c0,ab,4acb20;其中正确的结论有()A1个B2个C3个D4个4如图,在平面直角坐标系中,直线与轴、轴分别交于点、,点是轴正半轴上的一点,当时,则点的纵坐标是( )A2BCD5如图,抛物线yax2bxc(a0)的对称轴为直线x1,与x轴的一个交点坐标为(1,0),其部分图象如图所示,下列结论:4acb2;方程ax2bxc0的两个根是x11,x23;3ac0;当y0时,x的取值范围是1x3;当x0时,y随x增
3、大而增大其中结论正确的个数是( )A4个B3个C2个D1个6将矩形纸片ABCD按如图所示的方式折叠,恰好得到菱形AECF,若AB=3,则菱形AECF的面积为()A1B2C2D47如图,在平面直角坐标系中,菱形ABCD的边AB在x轴正半轴上,点A与原点重合,点D的坐标是 (3,4),反比例函数y(k0)经过点C,则k的值为()A12B15C20D328有一副三角板,含45的三角板的斜边与含30的三角板的长直角边相等,如图,将这副三角板直角顶点重合拼放在一起,点B,C,E在同一直线上,若BC2,则AF的长为()A2B22C42D29已知,是关于的一元二次方程的两个不相等的实数根,且满足,则的值是(
4、 )A3B1C3或D或110如图,在中,将绕点按顺时针方向旋转度后得到,此时点在边上,斜边交边于点,则的大小和图中阴影部分的面积分别为( )ABCD二、填空题(每小题3分,共24分)11点P(6,3)关于x轴对称的点的坐标为_12因式分解:_;13某海滨浴场有100个遮阳伞,每个每天收费10元时,可全部租出,若每个每天提高2元,则减少10个伞租出,若每个每天收费再提高2元,则再减少10个伞租出,以此类推,为了投资少而获利大,每个遮阳伞每天应提高_。14抛物线y3(x+2)2+5的顶点坐标是_15已知两个二次函数的图像如图所示,那么 a1_a2(填“”、“”或“”)16如图,已知正六边形内接于,
5、若正六边形的边长为2,则图中涂色部分的面积为_.17如图,中,将斜边绕点逆时针旋转至,连接,则的面积为_18如图,在RtABC中,ACB=90,AC=4,BC=3,D是以点A为圆心2为半径的圆上一点,连接BD,M为BD的中点,则线段CM长度的最小值为_三、解答题(共66分)19(10分)为了了解全校名同学对学校设置的体操、篮球、足球、跑步、舞蹈等课外活动项目的喜爱情况,在全校范围内随机抽取了若干名同学,对他们喜爱的项目(每人选一项)进行了问卷调查,将数据进行了统计,并绘制成了如图所示的条形统计图和扇形统计图(均不完整),请回答下列问题(1)在这次问卷调查中,共抽查了_名同学;(2)补全条形统计
6、图;(3)估计该校名同学中喜爱足球活动的人数;(4)在体操社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,现决定从这四人中任选两名参加体操大赛用树状图或列表法求恰好选中甲、乙两位同学的概率20(6分)某网店打出促销广告:最潮新款服装30件,每件售价300元,若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买2件,所买的每件服装的售价均降低6元.已知该服装成本是每件200元.设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围.(2)顾客一次性购买多少件时,该网店从中获利最多,并求出获利的最大值?21(6分)某土特产专卖店销售
7、甲种干果,其进价为每千克40元,(物价局规定:出售时不得低于进价,又不得高于进价的1.5倍销售)试销后发现:售价x(元/千克)与日销售量y(千克)存在一次函数关系:y10 x+1若现在以每千克x元销售时,每天销售甲种干果可盈利w元(盈利售价进价)(1)w与x的函数关系式(写出x的取值范围);(2)单价为每千克多少元时,日销售利润最高,最高为多少元;(3)专卖店销售甲种干果想要平均每天获利2240元的情况下,为尽可能让利于顾客,赢得市场,则售价应定为每千克多少元22(8分)如图是某区域的平面示意图,码头A在观测站B的正东方向,码头A的北偏西方向上有一小岛C,小岛C在观测站B的北偏西方向上,码头A
8、到小岛C的距离AC为10海里(1)填空: 度, 度;(2)求观测站B到AC的距离BP(结果保留根号)23(8分) “红灯停,绿灯行”是我们过路口遇见交通信号灯时必须遵守的规则.小明每天从家骑自行车上学要经过三个路口,假如每个路口交通信号灯中红灯和绿灯亮的时间相同,且每个路口的交通信号灯只安装了红灯和绿灯.那么某天小明从家骑车去学校上学,经过三个路口抬头看到交通信号灯.(1)请画树状图,列举小明看到交通信号灯可能出现的所有情况;(2)求小明途经三个路口都遇到红灯的概率.24(8分)某商店代销一批季节性服装,每套代销成本40元,第一个月每套销售定价为52元时,可售出180套;应市场变化调整第一个月
9、的销售价,预计销售定价每增加1元,销售量将减少10套(1)若设第二个月的销售定价每套增加x元,填写下表时间第一个月第二个月每套销售定价(元)销售量(套)(2)若商店预计要在这两个月的代销中获利4160元,则第二个月销售定价每套多少;(3)求当4x6时第二个月销售利润的最大值25(10分)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被哦感染(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?(3)轮(为正整数)感染后,被感染的电脑有_台26(10分)如图,已知抛物线y=ax2+bx+c(a0)的对称轴为
10、直线x=1,且抛物线经过A(1,0),C(0,3)两点,抛物线与x轴的另一交点为B(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)设点P为抛物线的对称轴x=1上的一个动点,求使BPC为直角三角形的点P的坐标参考答案一、选择题(每小题3分,共30分)1、D【解析】一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案.【详解】根据题意 :从袋中任意摸出一个球,是白球的概率为=.故答案为D【点睛】此题主要考查了概率的求法,如果一个事件有n种可能
11、,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.2、C【分析】根据反比例函数k的几何意义得出SPOC21,S矩形ACOD6,即可得出,从而得出,通过证得POCPBA,得出,即可得出SPAB1SPOC1【详解】如图,由题意可知SPOC21,S矩形ACOD6,SPOCOCPC,S矩形ACODOCAC,AB轴,POCPBA,SPAB1SPOC1,PAB的面积等于定值1故选:C【点睛】本题考查了反比例函数的性质以及矩形的面积的计算,利用相似三角形面积比等于相似比的平方是解决本题的关键3、C【详解】根据图像可得:a0,b0,c=0,即abc=0,则正确;当x=1时,y0,
12、即a+b+c0,则错误;根据对称轴可得:=,则b=3a,根据a0,bb;则正确;根据函数与x轴有两个交点可得:4ac0,则正确.故选C.【点睛】本题考查二次函数的性质.能通过图象分析a,b,c的正负,以及通过一些特殊点的位置得出a,b,c之间的关系是解题关键.4、D【分析】首先过点B作BDAC于点D,设BC=a,根据直线解析式得到点A、B坐标,从而求出OA 、OB的长,易证BCD ACO,再根据相似三角形的对应边成比例得出比例式,即可解答.【详解】解:过点B作BDAC于点D,设BC=a,直线与轴、轴分别交于点、,A(-2,0),B(0,1),即OA=2, OB=1,AC=, ,AB平分CAB,
13、又BOAO,BDAC,BO= BD=1,BCD =ACO,CDB=COA =90,BCD ACO, ,即a:=1:2 解得:a1=, a2=-1(舍去),OC=OB+BC=+1=,所以点C的纵坐标是.故选:D.【点睛】本题考查相似三角形的判定与性质、角平分线的性质的综合运用,解题关键是恰当作辅助线利用角平分线的性质.5、B【详解】解:抛物线与x轴有2个交点,b24ac0,所以正确;抛物线的对称轴为直线x=1,而点(1,0)关于直线x=1的对称点的坐标为(3,0),方程ax2+bx+c=0的两个根是x1=1,x2=3,所以正确;x=1,即b=2a,而x=1时,y=0,即ab+c=0,a+2a+c
14、=0,所以错误;抛物线与x轴的两点坐标为(1,0),(3,0),当1x3时,y0,所以错误;抛物线的对称轴为直线x=1,当x1时,y随x增大而增大,所以正确故选:B【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a0),二次项系数a决定抛物线的开口方向和大小:当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab0),对称轴在y轴左;当a与b异号时(即ab0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由决定:=b24ac0时,抛物线与x轴有
15、2个交点;=b24ac=0时,抛物线与x轴有1个交点;=b24ac0时,抛物线与x轴没有交点6、C【分析】根据菱形AECF,得FCO=ECO,再利用ECO=ECB,可通过折叠的性质,结合直角三角形勾股定理求得BC的长,则利用菱形的面积公式即可求解【详解】解:四边形AECF是菱形,AB=3,假设BE=x,则AE=3x,CE=3x,四边形AECF是菱形,FCO=ECO,ECO=ECB,ECO=ECB=FCO=30,2BE=CE,CE=2x,2x=3x,解得:x=1,CE=2,利用勾股定理得出:BC2+BE2=EC2,BC=,又AE=ABBE=31=2,则菱形的面积是:AEBC=2故选C【点睛】本题
16、考查折叠问题以及勾股定理解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等7、D【分析】分别过点D,C作x轴的垂线,垂足为M,N,先利用勾股定理求出菱形的边长,再利用RtODMRtBCN得出BNOM,则可确定点C的坐标,将C点坐标代入反比例函数解析式中即可求出k的值.【详解】如图,分别过点D,C作x轴的垂线,垂足为M,N,点D的坐标是 (3,4),OM3,DM4,在RtOMD中,OD 四边形ABCD为菱形,ODCBOB5,DMCN4,RtODMRtBCN(HL),BNOM3,ONOB+BN5+38,又CN4,C(8,4),将
17、C(8,4)代入 得,k8432,故选:D【点睛】本题主要考查勾股定理,全等三角形的性质,待定系数法求反比例函数的解析式,掌握全等三角形的性质及待定系数法是解题的关键.8、D【分析】根据正切的定义求出AC,根据正弦的定义求出CF,计算即可【详解】解:在RtABC中,BC2,A30,AC2,则EFAC2,E45,FCEFsinE,AFACFC2,故选:D【点睛】本题考查的是特殊角的三角函数值的应用,掌握锐角三角函数的概念、熟记特殊角的三角函数值是解题的关键9、A【分析】根据一元二次方程根与系数的关系,计算出、再代入分式计算,即可求得【详解】解:由根与系数的关系得: ,即 ,解得:或,而当时,原方
18、程,无实数根,不符合题意,应舍去, 的值为1故选A【点睛】本题考查一元二次方程中根与系数的关系应用,难度不大,求得结果后需进行检验是顺利解题的关键10、C【解析】试题分析:ABC是直角三角形,ACB=90,A=30,BC=2,B=60,AC=BCcotA=2=2,AB=2BC=4,EDC是ABC旋转而成,BC=CD=BD=AB=2,B=60,BCD是等边三角形,BCD=60,DCF=30,DFC=90,即DEAC,DEBC,BD=AB=2,DF是ABC的中位线,DF=BC=2=1,CF=AC=2=,S阴影=DFCF=故选C考点:1.旋转的性质2.含30度角的直角三角形二、填空题(每小题3分,共
19、24分)11、 (6,3)【分析】根据“在平面直角坐标系中,关于轴对称的两点的坐标横坐标相同、纵坐标互为相反数”,即可得解【详解】关于轴对称的点的坐标为故答案为:【点睛】本题比较容易,考查平面直角坐标系中关于x轴对称的两点的坐标之间的关系,是需要识记的内容12、(a-b)(a-b+1)【解析】原式变形后,提取公因式即可得到结果【详解】解:原式=(a-b)2+(a-b)=(a-b)(a-b+1),故答案为:(a-b)(a-b+1)【点睛】此题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键13、4元或6元【分析】设每个遮阳伞每天应提高x元,每天获得利润为S,每个每天应收费(10
20、+x)元,每天的租出量为(100-10=100-5x)个,由此列出函数解析式即可解答【详解】解:设每个遮阳伞每天应提高x元,每天获得利润为S,由此可得,S=(10+x)(100-10),整理得S=-5x2+50 x+1000,=-5(x-5)2+1125,因为每天提高2元,则减少10个,所以当提高4元或6元的时候,获利最大,又因为为了投资少而获利大,因此应提高6元;故答案为:4元或6元【点睛】此题考查运用每天的利润=每个每天收费每天的租出量列出函数解析式,进一步利用题目中实际条件解决问题14、(2,5)【分析】已知抛物线的顶点式,可直接写出顶点坐标【详解】解:由y3(x+2)2+5,根据顶点式
21、的坐标特点可知,顶点坐标为(2,5)故答案为:(2,5)【点睛】本题考查二次函数的性质,熟知二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,顶点坐标为(h,k),对称轴为x=h15、【分析】直接利用二次函数的图象开口大小与a的关系进而得出答案【详解】解:如图所示:的开口小于的开口,则a1a2,故答案为:.【点睛】此题主要考查了二次函数的图象,正确记忆开口大小与a的关系是解题关键16、【分析】根据圆的性质和正六边形的性质证明CDABDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点正六边形内接于,BOA=AOC=6
22、0,OA=OB=OC=4,BOC=120,ODBC,BD=CDOCB=OBC=30,OD= ,CDA=BDO,CDABDO,SCDA=SBDO,图中涂色部分的面积等于扇形AOB的面积为:.故答案为:.【点睛】本题考查圆的内接正多边形的性质,根据圆的性质结合正六边形的性质将涂色部分转化成扇形面积是解答此题的关键.17、8【分析】过点B作BEAC于点E,由题意可证ABCBAE,可得AC=BE=4,即可求ABC的面积【详解】解:如图:过点B作BEAC于点E 旋转 AB=AB,BAB=90 BAC+BAC=90,且BAC+ABE=90 BAC=ABE,且AEB=ACB=90,AB=AB ABCBAE(
23、AAS) AC=BE=4 SABC= 故答案为:【点睛】本题考查了旋转的性质,全等三角形的判定和性质,利用旋转的性质解决问题是本题的关键18、【分析】作AB的中点E,连接EM,CE,AD根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.【详解】解:如图,取AB的中点E,连接CE,ME,AD,E是AB的中点,M是BD的中点,AD=2,EM为BAD的中位线, ,在RtACB中,AC=4,BC=3,由勾股定理得,AB= CE为RtACB斜边的中线,,在CEM中, ,即,CM的最大值为 .故答案为:.【点睛】本题考查
24、了圆的性质,直角三角形的性质及中位线的性质,利用三角形三边关系确定线段的最值问题,构造一个以CM为边,另两边为定值的的三角形是解答此题的关键和难点.三、解答题(共66分)19、(1)50;(2)见解析;(3)1020名;(4)树状图见解析,【分析】(1)根据两种统计图可知喜欢跑步的有5名同学,占10%,即可求得总人数;(2)由(1)可求得喜欢足球的人数,继而补全条形统计图;(3)利用样本估计总体的方法,求得答案;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两位同恰好选中甲、乙两位同学的情况,再利用概率公式即可求出答案【详解】解:(1)喜欢跑步的有名同学,占,在这次问卷调
25、查中,一共抽查了学生数: (名);故答案为: 50;(2)喜欢足球人数:.补全统计图:(3)该校名同学中喜爱足球活动的有:(名).(4)画树状图得:共有种等可能的情况,恰好选中甲、乙两位同学的有种.【点睛】扇形图和条形图结合考查时,要注意将表示同一意义的量对应起来思考,条形图表示数量,扇形图表示百分比,通过两者的对应可以求出总量和各部分的值;可根据情况画树状图或用列表法求解,在利用画树状图或列表法表示所有等可能的结果时,要做到不重不漏20、(1)y=100 x(的整数) y=x(的整数);(2)购买22件时,该网站获利最多,最多为1408元.【分析】(1)根据题意可得出销售量乘以每台利润进而得
26、出总利润;(2)根据一次函数和二次函数的性质求得最大利润.【详解】(1)当的整数时,y与x的关系式为y=100 x;当的整数时, ,y= (的整数),y与x的关系式为:y=100 x(的整数), y=x(的整数)(2)当(的整数),y=100 x,当x=10时,利润有最大值y=1000元;当10 x30时,y=,a=-30,抛物线开口向下,y有最大值,当x=时,y取最大值,因为x为整数,根据对称性得:当x=22时,y有最大值=1408元1000元,所以顾客一次性购买22件时,该网站获利最多.【点睛】本题考查分段函数及一次函数和二次函数的性质,利用函数性质求最值是解答此题的重要途径,自变量x的取
27、值范围及取值要求是解答此题的关键之处.21、(1)w10 x2+1100 x28000,(40 x60);(2)单价为每千克55元时,日销售利润最高,最高为2250元;(3)售价应定为每千克54元【分析】(1)根据盈利每千克利润销量,列函数关系式即可;(2)根据二次函数的性质即可得到结论;(3)根据每天获利2240元列出方程,然后取较小值即可【详解】解:(1)根据题意得,w(x40)y(x40)(10 x+1)10 x2+1100 x28000,(40 x60);(2)由(1)可知w10 x2+1100 x28000,配方得:w10(x55)2+2250,单价为每千克55元时,日销售利润最高,
28、最高为2250元;(3)由(1)可知w10 x2+1100 x28000,224010 x2+1100 x28000,解得:x154,x256,由题意可知x256(舍去),x54,答:售价应定为每千克54元【点睛】此题主要考查了二次函数的应用以及一元二次方程的应用,正确得出w与x之间的关系是解题关键22、(1)30,45;(2)(55)海里【分析】(1)由题意得:,由三角形内角和定理即可得出的度数;(2)证出是等腰直角三角形,得出,求出,由题意得出,解得即可【详解】解:(1)由题意得:,;故答案为30,45;(2),是等腰直角三角形,解得:,答:观测站B到AC的距离BP为海里【点睛】本题考查了
29、解直角三角形的应用方向角问题,通过解直角三角形得出方程是解题的关键23、(1)详见解析;共有8种等可能的结果;(2)【分析】此题分三步完成,每一个路口需要选择一次,所以把每个路口看做一步,用树状图表示所有情况,再利用概率公式求解【详解】(1)列树状图如下:由树状图可以看出,共有8种等可能的结果,即:红红红、红红绿、红绿红、红绿绿、绿红红、绿红绿、绿绿红、绿绿绿、(2)由(1)可知(三次红灯).【点睛】此题考查的是用树状图法求概率树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验用到的知识点为:概率所求情况数与总情况数之比24、(1)52;52+x;180;180-1
30、0 x;(2)1元;(3)2240元【分析】(1)本题先设第二个月的销售定价每套增加x元,再分别求出销售量即可;(2)本题先设第二个月的销售定价每套增加x元,根据题意找出等量关系列出方程,再把解得的x代入即可(3)根据利润的表达式化为二次函数的顶点式,即可解答本题【详解】解:(1)若设第二个月的销售定价每套增加x元,填写下表:时间第一个月第二个月销售定价(元)5252+x销售量(套)180180-10 x故答案为:52;52+x;180;180-10 x(2)若设第二个月的销售定价每套增加x元,根据题意得:(52-40)180+(52+x-40)(180-10 x)=411,解得:x1=-2(舍去),x2=8,当x=-2时,52+x=50(舍去),当x=8时,52+x=1答:第二个月销售定价每套应为1元(3)设第二个月利润为y元由题意得到:y=(52+x-40)(180-10 x)=-10 x2+1x+211=-10(x-3)2+2250-100当4x6时,y随x的增大而减小,当x=4时,y取最大值,此时y=2240,52+x=52+4=56,即要使第二个月利润达到最大,应定价为56元,此时第二个月的最大利润是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 手工制作在小学数学几何图形教学中
- 人教部编版四年级语文上册口语交际《安慰》精美课件
- 【暑假阅读】小升初非连续性文本阅读衔接讲义 专题07 车票路线类(有答案解析)
- 福建省福州市平潭县新世纪学校2023-2024学年高三学生寒假自主学习调查数学试题
- 2024年盘锦资格证客运题库
- 2024年西藏道路运输客运从业资格证考试题库
- 2024年通化客运从业资格模拟考试
- 2024年湘西客运资格证题库
- 2024年镇江公交车从业资格证考试题库
- 2024年黑龙江客运资格证题库及答案
- 管道补偿器安装检验记录
- 摊铺机司机班组级安全教育试卷
- 学校食堂出入库管理制度
- 限制被执行人驾驶令申请书
- 铝合金船的建造课件
- 边坡土石方开挖施工方案
- 八年级上册语文课后习题及答案汇编(部分不全)
- 玻璃厂应急预案
- 安全帽生产与使用管理规范
- 货车进入车间安全要求
- 新版深度学习完整整套教学课件
评论
0/150
提交评论