2023学年河南省部分地区数学九年级第一学期期末质量检测模拟试题含解析_第1页
2023学年河南省部分地区数学九年级第一学期期末质量检测模拟试题含解析_第2页
2023学年河南省部分地区数学九年级第一学期期末质量检测模拟试题含解析_第3页
2023学年河南省部分地区数学九年级第一学期期末质量检测模拟试题含解析_第4页
2023学年河南省部分地区数学九年级第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1如图,在矩形中,过对角线交点作交于点,交于点,则的长是( )A1BC2D2已知两圆的半径分别是2和4,圆心距是3,那么这两圆的位置是( )A内含B内切C相交D外切3如图,菱形的对角线,相交于点,过点作于点,连接,若,则的长为( )A3B4C5

2、D64如图,这是一个由四个半径都为1米的圆设计而成的花坛,圆心在同一直线上,每个圆都会经过相邻圆的圆心,则这个花坛的周长(实线部分)为()A4米B米C3米D2米5如图,矩形的对角线交于点O,已知则下列结论错误的是( )ABCD6如图所示,在平面直角坐标系中,已知点A(2,4),过点A作ABx轴于点B将AOB以坐标原点O为位似中心缩小为原图形的,得到COD,则CD的长度是()A2B1C4D27如图,将绕着点按顺时针方向旋转,点落在位置,点落在位置,若,则的度数是 ( )ABCD8如图所示的网格是正方形网格,则sinA的值为( )ABCD9成语“水中捞月”所描述的事件是( )A必然事件B随机事件C

3、不可能事件D无法确定10在一个不透明的盒子中有20个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.3,由此可估计盒中红球的个数约为()A3B6C7D14二、填空题(每小题3分,共24分)11已知依据上述规律,则_12某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件若商场平均每天要赢利1 200元,设每件衬衫应降价x元,则所列方程为_(不用化简)13若关于的方程的一个

4、根是1,则的值为_.14已知,则的值是_15一个不透明的袋子里装有两双只有颜色不同的手套,小明已经摸出一只手套,他再任意摸取一只,恰好两只手套凑成同一双的概率为_.16如图,边长为2的正方形,以为直径作,与相切于点,与交于点,则的面积为_17下表是某种植物的种子在相同条件下发芽率试验的结果. 种子个数100400900150025004000发芽种子个数92352818133622513601发芽种子频率0. 920. 880. 910. 890. 900. 90根据上表中的数据,可估计该植物的种子发芽的概率为_.18如图,已知O的半径为10,ABCD,垂足为P,且ABCD16,则OP_三、解

5、答题(共66分)19(10分)超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件根据市场调查发现,销售单价每增加2元,每天销售量会减少1件设销售单价增加元,每天售出件(1)请写出与之间的函数表达式;(2)当为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利元,当为多少时最大,最大值是多少?20(6分)如图甲,直线y=x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P

6、,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;(3)当0 x3时,在抛物线上求一点E,使CBE的面积有最大值(图乙、丙供画图探究)21(6分)解方程(1)x2+4x30(用配方法)(2)3x(2x+3)4x+622(8分)解方程:3x24x+11(用配方法解)23(8分)如图,在平面直角坐标系中,AOB=90,ABx轴,OA=2,双曲线经过点A将AOB绕点A顺时针旋转,使点O的对应点D落在x轴的负半轴上,若AB的对应线段AC恰好经过点O(1)求点A的坐标和双曲线的解析式;(2)判断点C是否在双曲线上,并说明理由24(8分)某驻村扶贫小组实施产业

7、扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如下图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润的最大值.25(10分)如图,点E是矩形ABCD对角线AC上的一个动点(点E可以与点A和点C重合),连接BE已知AB=3cm,BC=4cm设A、E两点间的距离为xcm,BE的长度为ycm某同学根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究下面是该同学的探究过程,请补充完整:(1)通过取点、画图、测量及分析,

8、得到了x与y的几组值,如下表:说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出已补全后的表中各对对应值为坐标的点,画出该函数的图象 (3)结合画出的函数图象,解决问题:当BE=2AE时,AE的长度约为 cm(结果保留一位小数)26(10分)如图,四边形OABC是矩形,A、C分别在y轴、x轴上,且OA6cm,OC8cm,点P从点A开始以2cm/s的速度向B运动,点Q从点B开始以1cm/s的速度向C运动,设运动时间为t(1)如图(1),当t为何值时,BPQ的面积为4cm2?(2)当t为何值时,以B、P、Q为顶点的三角形与ABC相似?(3)如图(2),在运动过程中的某一时刻,反比

9、例函数y的图象恰好同时经过P、Q两点,求这个反比例函数的解析式参考答案一、选择题(每小题3分,共30分)1、B【分析】连接,由矩形的性质得出,由线段垂直平分线的性质得出,设,则,在中,由勾股定理得出方程,解方程即可【详解】如图:连接,四边形是矩形,设,则,在中,由勾股定理得:,解得:,即;故选B【点睛】本题考查了矩形的性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,由勾股定理得出方程是解题的关键2、C【分析】先求两圆半径的和与差,再与圆心距进行比较,确定两圆的位置关系【详解】解:两圆的半径分别是2和4,圆心距是3,则2+4=6,4-2=2,236,圆心距介于两圆半径的差与和之间,两圆

10、相交故选C【点睛】本题利用了两圆相交,圆心距的长度在两圆的半径的差与和之间求解3、A【分析】根据菱形面积的计算公式求得AC,再利用直角三角形斜边中线的性质即可求得答案.【详解】四边形ABCD是菱形,OB=4,;AHBC,.故选:A.【点睛】本题考查了菱形的性质及直角三角形斜边的中线等于斜边的一半的性质,根据菱形的面积公式:菱形的面积等于两条对角线乘积的一半是解题的关键.4、A【分析】根据弧长公式解答即可【详解】解:如图所示:这是一个由四个半径都为1米的圆设计而成的花坛,圆心在同一直线上,每个圆都会经过相邻圆的圆心,OAOCOAOOOC1,AOC120,AOB60,这个花坛的周长,故选:A【点睛

11、】本题考查了圆的弧长公式,找到弧所对圆心角度数是解题的关键5、C【分析】根据矩形的性质得出ABCDCB90,ACBD,AOCO,BODO,ABDC,再解直角三角形判定各项即可【详解】选项A,四边形ABCD是矩形,ABCDCB90,ACBD,AOCO,BODO,AOOBCODO,DBCACB,由三角形内角和定理得:BACBDC,选项A正确; 选项B,在RtABC中,tan,即BCmtan,选项B正确;选项C,在RtABC中,AC,即AO,选项C错误;选项D,四边形ABCD是矩形,DCABm,BACBDC,在RtDCB中,BD,选项D正确.故选C【点睛】本题考查了矩形的性质和解直角三角形,能熟记矩

12、形的性质是解此题的关键6、A【解析】直接利用位似图形的性质结合A点坐标可直接得出点C的坐标,即可得出答案【详解】点A(2,4),过点A作ABx轴于点B,将AOB以坐标原点O为位似中心缩小为原图形的,得到COD,C(1,2),则CD的长度是2,故选A【点睛】本题主要考查了位似变换以及坐标与图形的性质,正确把握位似图形的性质是解题关键7、C【解析】由旋转可知BAC=A,ACA=20,据此可进行解答.【详解】解:由旋转可知BAC=A,ACA=20,由ACAB可得BAC=A=90-20=70,故选择C.【点睛】本题考查了旋转的性质.8、C【分析】设正方形网格中的小正方形的边长为1,连接格点BC,AD,

13、过C作CEAB于E,解直角三角形即可得到结论【详解】解:设正方形网格中的小正方形的边长为1,连接格点BC,AD,过C作CEAB于E,BC2,AD,SABCABCEBCAD,CE,故选:C【点睛】本题考查了解直角三角形的问题,掌握解直角三角形的方法以及锐角三角函数的定义是解题的关键9、C【分析】根据必然事件、不可能事件、随机事件的概念进行解答即可【详解】水中捞月是不可能事件故选C【点睛】本题考查了必然事件、不可能事件、随机事件的概念必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件10、B【分析】在

14、同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,【详解】解:根据题意列出方程,解得:x=6,故选B.考点:利用频率估计概率二、填空题(每小题3分,共24分)11、.【解析】试题解析:等号右边第一式子的第一个加数的分母是从1开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是2,结果的分子是2,分母是13=3;等号右边第二个式子的第一个加数的分母是从2开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是3,结果的分子是3,分母是24=8;等号右边第三个式子的第一个加数的分母是从3开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母

15、是4,结果的分子是4,分母是35=1所以a99=.考点:规律型:数字的变化类12、 (40-x)(2x+20)=1200【解析】试题解析:每件衬衫的利润:销售量:方程为:故答案为:点睛:这个题目属于一元二次方程的实际应用,利用销售量每件利润=总利润,列出方程即可.13、6【分析】把x=1代入原方程就可以得到一个关于k的方程,解这个方程即可求出k的值【详解】把代入方程得到,解得.故答案为:6.【点睛】本题考查了一元二次方程的解,将方程的根代入并求值是解题的关键.14、【分析】设a=3k,则b=4k,代入计算即可【详解】设a=3k,则b=4k,故答案为:【点睛】本题考查了比例的性质熟练掌握k值法是

16、解答本题的关键15、【分析】设一双为红色,另一双为绿色,画树状图得出总结果数和恰好两只手套凑成同一双的结果数,利用概率公式即可得答案.【详解】画树状图如下:共有6种可能情况,恰好两只手套凑成同一双的情况有2种,恰好两只手套凑成同一双的概率为,故答案为:【点睛】本题考查用列表法或树状图法求概率,熟练掌握概率公式是解题关键.16、【分析】运用切线长定理和勾股定理求出DF,进而完成解答【详解】解:与相切于点,与交于点EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在RtCDF中,由勾股定理得:DF2=CF2-CD2,即(2-x)2=(2+x)2-22解得:x=,则DF=的面积

17、为=故答案为【点睛】本题考查了切线长定理和勾股定理等知识点,根据切线长定理得到相等的线段是解答本题的关键17、0.1【分析】仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在0.1左右,从而得到结论【详解】由表格可得,当实验次数越来越多时,发芽种子频率稳定在0. 1,符合用频率佔计概率,种子发芽概率为0. 1故答案为:0.1【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率用到的知识点为:频率=所求情况数与总情况数之比18、6【分析】根据题意作出合适的辅助线,然后根据垂径定理、勾股定理即可求得OP的长,本题得以解决【详解】解:作OEAB交AB与点E,作OFCD交CD于点F,连接

18、OB,如图所示,则AEBE,CFDF,OFPOEPOEB=90,又圆O的半径为10,ABCD,垂足为P,且ABCD16,FPE90,OB10,BE8,四边形OEPF是矩形,OE=6,同理可得,OF6,EP6,OP,故答案为:【点睛】本题考查垂径定理、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答三、解答题(共66分)19、(1)(2)当为10时,超市每天销售这种玩具可获利润2250元(3)当为20时最大,最大值是2400元【分析】(1)根据题意列函数关系式即可;(2)根据题意列方程即可得到结论;(3)根据题意得到,根据二次函数的性质得到当时,随的增大而增大,于是得到结论【详解】(1

19、)根据题意得,;(2)根据题意得,解得:,每件利润不能超过60元,答:当为10时,超市每天销售这种玩具可获利润2250元;(3)根据题意得,当时,随的增大而增大,当时,答:当为20时最大,最大值是2400元【点睛】本题考查了一次函数、二次函数的应用,弄清题目中包含的数量关系是解题关键20、(1)y=x24x+3;(2)(2,)或(2,7)或(2,1+2)或(2,12);(3)E点坐标为(,)时,CBE的面积最大【解析】试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC的长,分MC=M

20、P、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;(3)过E作EFx轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标试题解析:(1)直线y=x+3与x轴、y轴分别交于点B、点C,B(3,0),C(0,3),把B、C坐标代入抛物线解析式可得,解得,抛物线解析式为y=x24x+3;(2)y=x24x+3=(x2)21,抛物线对称轴为x=2,P(2,1),设M(2,t),且C(0,3),MC=,MP=|t+1|,PC=,CPM为等腰三角形,有MC=MP、

21、MC=PC和MP=PC三种情况,当MC=MP时,则有=|t+1|,解得t=,此时M(2,);当MC=PC时,则有=2,解得t=1(与P点重合,舍去)或t=7,此时M(2,7);当MP=PC时,则有|t+1|=2,解得t=1+2或t=12,此时M(2,1+2)或(2,12);综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,1+2)或(2,12);(3)如图,过E作EFx轴,交BC于点F,交x轴于点D,设E(x,x24x+3),则F(x,x+3),0 x3,EF=x+3(x24x+3)=x2+3x,SCBE=SEFC+SEFB=EFOD+EFBD=EFOB=3(x2+3x)=(x)

22、2+,当x=时,CBE的面积最大,此时E点坐标为(,),即当E点坐标为(,)时,CBE的面积最大考点:二次函数综合题21、(1)x12+,x22;(2)x1,x2【解析】(1)原式利用配方法求出解即可;(2)原式整理后,利用因式分解法求出解即可【详解】(1)方程整理得:x2+4x3,配方得:x2+4x+47,即(x+2)27,开方得:x+2,解得:x12+,x22;(2)方程整理得:3x(2x+3)2(2x+3)0,分解因式得:(3x2)(2x+3)0,可得3x20或2x+30,解得:x1,x2【点睛】此题考查了解一元二次方程因式分解法,以及配方法,熟练掌握各种解法是解本题的关键22、x11,

23、x2【分析】首先把系数化为1,移项,把常数项移到等号的右侧,然后在方程的左右两边同时加上一次项系数的一半,即可使左边是完全平方公式,右边是常数项,即可求解【详解】3x24x+113(x2x)+11(x)2xx11,x2【点睛】本题考查解一元二次方程的方法,解题的关键是熟练掌握用配方法解一元二次方程的一般步骤23、(1),双曲线的解析式为;(2)点在双曲线上,理由见解析.【分析】(1)根据旋转的性质和平行线的性质,得到,得到AOD是等边三角形,根据特殊角的三角函数,求出点A的坐标,然后得到双曲线的解析式;(2)先求出OC的长度,然后利用特殊角的三角函数求出点C的坐标,然后进行判断即可.【详解】解

24、:(1)过点A作轴,垂足为轴,有旋转的性质可知,为等边三角形,点的坐标为由题意知,双曲线的解析式为:(2)点在双曲线上,理由如下:过点作轴,垂足为由(1)知,点的坐标为将代入中,点在双曲线上【点睛】本题考查了反比例函数图象上点的坐标特征,旋转的性质,等边三角形的判定和性质,特殊角的三角函数等,求得AOD是等边三角形是解题的关键24、 (1)y与x的函数解析式为;(2)这一天销售西瓜获得利润的最大值为1250元.【解析】(1)当6x10时,由题意设ykxb(k0),利用待定系数法求得k、b的值即可;当10 x12时,由图象可知y200,由此即可得答案;(2)设利润为w元,当6x10时,w2001250,根据二次函数的性质可求得最大值为1250;当10 x12时,w200 x1200,由一次函数的性质结合x的取值范围可求得w的最大值为1200,两者比较即可得答案.【详解】(1)当6x10时,由题意设ykxb(k0),它的图象经过点(6,1000)与点(10,200), ,解得 ,当6x10时, y-200 x+2200,当10 x12时,y200,综上,y与x的函数解析式为;(2)设利润为w元,当6x10时,y200 x2200,w(x6)y(x6)(200 x200)2001250,2000,6x10,当x时,w有最大值,此时w=1250;当10 x12时,y200,w(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论