2023学年海南海口市琼山区国兴中学数学九上期末质量跟踪监视试题含解析_第1页
2023学年海南海口市琼山区国兴中学数学九上期末质量跟踪监视试题含解析_第2页
2023学年海南海口市琼山区国兴中学数学九上期末质量跟踪监视试题含解析_第3页
2023学年海南海口市琼山区国兴中学数学九上期末质量跟踪监视试题含解析_第4页
2023学年海南海口市琼山区国兴中学数学九上期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每题4分,共48分)1若一元二次方程的两根为和,则的值等于( )A1BCD2若点,在

2、抛物线上,则下列结论正确的是( )ABCD3下列立体图形中,主视图是三角形的是( ).ABCD4已知、是一元二次方程的两个实数根,下列结论错误的是( )ABCD5下列说法正确的是()A垂直于半径的直线是圆的切线B经过三个点一定可以作圆C圆的切线垂直于圆的半径D每个三角形都有一个内切圆6从 1 到 9这9个自然数中任取一个,是偶数的概率是()ABCD7如图,抛物线yax2+bx+c(a0)的对称轴为直线x1,与x轴的一个交点坐标为(1,0),其部分图象如图所示,下列结论:b24ac0;方程ax2+bx+c0的两个根是x11,x23;2a+b0;当y0时,x的取值范围是1x3;当x0时,y随x增大

3、而减小其中结论正确的个数是()A4个B3个C2个D1个8二次函数的图象如右图所示,那么一次函数的图象大致是( )ABCD9如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB4,cosABC,则BD的长为()A2B4C2D410如图,以扇形 OAB 的顶点 O 为原点,半径 OB 所在的直线为 x 轴,建立平面直角坐标系,点 B 的坐标为(2,0),若抛物线 (n 为常数)与扇形 OAB 的边界总有两个公共点则 n 的取值范围是( )An-4BCD11在下列图形中,既是中心对称图形又是轴对称图形的是( )A等边三角形B圆C等腰梯形D直角三角形12二次函数的最小值是 ( )A2B2C1D1

4、二、填空题(每题4分,共24分)13已知扇形的圆心角为120,弧长为6,则它的半径为_14点M(3,)与点N()关于原点对称,则_.15已知ABCD,AD与BC相交于点O.若,AD10,则AO_.16已知线段a=4,b=9,则a,b的比例中项线段长等于_17如图,四边形,都是平行四边形,点是内的一点,点,分别是,上,的一点,若阴影部分的面积为5,则的面积为_18一元二次方程的一个根为,另一个根为_.三、解答题(共78分)19(8分)如图,已知二次函数的顶点为(2,),且图象经过A(0,3),图象与x轴交于B、C两点(1)求该函数的解析式;(2)连结AB、AC,求ABC面积20(8分)如图1,抛

5、物线yx2+bx+c的对称轴为直线x,与x轴交于点A和点B(1,0),与y轴交于点C,点D为线段AC的中点,直线BD与抛物线交于另一点E,与y轴交于点F(1)求抛物线的解析式;(2)点P是直线BE上方抛物线上一动点,连接PD、PF,当PDF的面积最大时,在线段BE上找一点G,使得PGEG的值最小,求出PGEG的最小值(3)如图2,点M为抛物线上一点,点N在抛物线的对称轴上,点K为平面内一点,当以A、M、N、K为顶点的四边形是正方形时,请求出点N的坐标21(8分)如图,已知点是外一点,直线与相切于点,直线分别交于点、,交于点(1)求证:;(2)当的半径为,时,求的长22(10分)如图,已知A(-

6、1,0),一次函数的图像交坐标轴于点B、C,二次函数的图像经过点A、C、B点Q是二次函数图像上一动点。(1)当时,求点Q的坐标;(2)过点Q作直线/BC,当直线与二次函数的图像有且只有一个公共点时,求出此时直线对应的一次函数的表达式并求出此时直线与直线BC之间的距离。23(10分)足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售为本,销售单价为元.(1)请直接写出与之间的函数关系式和自变量的取值范围;(2)将足球纪

7、念册销售单价定为多少元时,商店每天销售纪念册获得的利润元最大?最大利润是多少元?24(10分)已知(1)求的值;(2)若,求的值25(12分)如图,抛物线经过A(4,0),B(1,0),C(0,2)三点(1)求出抛物线的解析式;(2)P是抛物线上一动点,过P作PMx轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由26如图,射线交一圆于点,射线交该圆于点,且 .(1)判断与的数量关系.(不必证明)(2)利用尺规作图,分别作线段的垂直平分线与的平分线,两线交于点(保留作图痕迹,不写作法),求证:平分.参考答案一、选择题

8、(每题4分,共48分)1、B【分析】先将一元二次方程变为一般式,然后根据根与系数的关系即可得出结论【详解】解:将变形为根据根与系数的关系:故选B【点睛】此题考查的是一元二次方程根与系数的关系,掌握两根之积等于是解决此题的关键2、A【分析】将x=0和x=1代入表达式分别求y1,y2,根据计算结果作比较.【详解】当x=0时,y1= -1+3=2,当x=1时,y2= -4+3= -1,.故选:A.【点睛】本题考查二次函数图象性质,对图象的理解是解答此题的关键.3、B【分析】根据从正面看得到的图形是主视图,可得图形的主视图【详解】A、C、D主视图是矩形,故A、C、D不符合题意;B、主视图是三角形,故B

9、正确;故选B【点睛】本题考查了简单几何体的三视图,圆锥的主视图是三角形4、D【分析】根据一元二次方程的根的判别式、一元二次方程根的定义、一元二次方程根与系数的关系逐一进行分析即可.【详解】x1、x2是一元二次方程x2-2x=0的两个实数根,这里a=1,b=-2,c=0,b2-4ac=(-2)2-410=40,所以方程有两个不相等的实数根,即,故A选项正确,不符合题意;,故B选项正确,不符合题意;,故C选项正确,不符合题意;,故D选项错误,符合题意,故选D.【点睛】本题考查了一元二次方程的根的判别式,根的意义,根与系数的关系等,熟练掌握相关知识是解题的关键.5、D【分析】根据与圆有关的基本概念依

10、次分析各项即可判断【详解】A垂直于半径且经过切点的直线是圆的切线,注意要强调“经过切点”,故本选项错误;B经过不共线的三点一定可以作圆,注意要强调“不共线”,故本选项错误;C圆的切线垂直于过切点的半径,注意强调“过切点”,故本选项错误;D每个三角形都有一个内切圆,本选项正确,故选D【点睛】本题考查了有关圆的切线的判定与性质,解答本题的关键是注意与圆有关的基本概念中的一些重要字词,学生往往容易忽视,要重点强调6、B【解析】在1到9这9个自然数中,偶数共有4个,从这9个自然数中任取一个,是偶数的概率为:.故选B.7、B【分析】利用抛物线与x轴的交点个数可对进行判断;利用抛物线的对称性得到抛物线与x

11、轴的一个交点坐标为(3,0),则可对进行判断;由对称轴方程得到b2a,则可对进行判断;根据抛物线在x轴上方所对应的自变量的范围可对进行判断;根据二次函数的性质对进行判断【详解】函数图象与x轴有2个交点,则b24ac0,故错误;函数的对称轴是x1,则与x轴的另一个交点是(3,0),则方程ax2+bx+c0的两个根是x11,x23,故正确;函数的对称轴是x1,则2a+b0成立,故正确;函数与x轴的交点是(1,0)和(3,0)则当y0时,x的取值范围是1x3,故正确;当x1时,y随x的增大而减小,则错误故选:B【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a0),二次

12、项系数a决定抛物线的开口方向和大小:当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由决定:=b2-4ac0时,抛物线与x轴有2个交点;=b2-4ac=0时,抛物线与x轴有1个交点;=b2-4ac0时,抛物线与x轴没有交点8、D【分析】可先根据二次函数的图象判断a、b的符号,再判断一次函数图象与实际是否相符,判断正误【详解】解:由二次函数图象,得出a0,b0,A、由一次函数

13、图象,得a0,b0,故A错误;B、由一次函数图象,得a0,b0,故B错误;C、由一次函数图象,得a0,b0,故C错误;D、由一次函数图象,得a0,b0,故D正确故选:D【点睛】本题考查了二次函数图象,应该熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.9、D【分析】由锐角三角函数可求ABC60,由菱形的性质可得ABBC4,ABDCBD30,ACBD,由直角三角形的性质可求BOOC2,即可求解【详解】解:cosABC,ABC60,四边形ABCD是菱形,ABBC4,ABDCBD30,ACBD,OCBC2,BOOC2,BD2BO4,故选:

14、D【点睛】此题主要考查三角函数的应用,解题的关键是熟知菱形的性质及解直角三角形的方法10、D【分析】根据AOB45求出直线OA的解析式,然后与抛物线解析式联立求出有一个公共点时的n值,即为一个交点时的最大值,再求出抛物线经过点B时的n的值,即为一个交点时的最小值,然后写出n的取值范围即可【详解】解:由图可知,AOB45,直线OA的解析式为yx,联立得:,得时,抛物线与OA有一个交点,此交点的横坐标为,点B的坐标为(2,0),OA2,点A的横坐标与纵坐标均为:,点A的坐标为(),交点在线段AO上;当抛物线经过点B(2,0)时,解得n=-4,要使抛物线与扇形OAB的边界总有两个公共点,则实数n的取

15、值范围是,故选:D【点睛】本题考查了二次函数的性质,主要利用了联立两函数解析式确定交点个数的方法,根据图形求出有一个交点时的最大值与最小值是解题的关键11、B【分析】根据轴对称图形与中心对称图形的概念对各选项分析判断即可【详解】解:A、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;B、圆是轴对称图形,也是中心对称图形,故本选项正确;C、等腰梯形是轴对称图形,不是中心对称图形,故本选项错误;D、直角三角形不一定是轴对称图形,也不是中心对称图形,故本选项错误;故选B【点睛】本题考查了轴对称图形与中心对称图形,识别轴对称图形的关键是寻找对称轴,图形两部分 沿对称轴折叠后可重合,识别中心对称

16、图形的关键是寻找对称中心,旋转180后与原图重合12、B【解析】试题分析:对于二次函数的顶点式y=a+k而言,函数的最小值为k.考点:二次函数的性质.二、填空题(每题4分,共24分)13、1【分析】根据弧长公式L求解即可【详解】L,R1故答案为1【点睛】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:L14、-6【分析】根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,列方程求解即可.【详解】解:根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,b+3=0,a-1+4=0,即:a=3且b=3,a+b=6【点睛】本题考查 关于原点对称的点的坐标,掌握坐标变化规律是

17、本题的解题关键.15、1【解析】ABCD, 解得,AO=1,故答案是:1【点睛】运用了平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键16、1【分析】根据比例中项的定义,列出比例式即可求解【详解】解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积,即,解得,(不合题意,舍去)故答案为:1【点睛】此题考查了比例线段;理解比例中项的概念,注意线段不能是负数17、90【分析】根据平行四边形的性质得到ABCD,AB=CD,EFHG,EF=HG,根据平行线分线段成比例定理和相似三角形的性质即可得到结论【详解】四边形都是平行四边形,又,易知,【点睛】此题考查平行四

18、边形的性质,平行线分线段成比例定理,三角形的面积,正确的识别图形是解题的关键18、【分析】利用因式分解法解得方程的两个根,即可得出另一个根的值.【详解】,变形为:,或,解得:;,一元二次方程的另一个根为:.故答案为:.【点睛】本题考查了解一元二次方程-因式分解法.三、解答题(共78分)19、(1);(2).【分析】(1)设该二次函数的解析式为,因为顶点(2,-1),可以求出h,k,将A(0,3)代入可以求出a,即可得出二次函数解析式. (2)由(1)求出函数解析式,令y等于0可以求出函数图像与x轴的两个交点为B,C两点,然后利用面积公式,即可求出三角形ABC的面积.【详解】(1)设该二次函数的

19、解析式为顶点为(2,) 又图象经过A(0,3) 即 该抛物线的解析式为(2)当时,解得,C(3,0) B(1,0)得.【点睛】熟练掌握待定系数法求二次函数解析式和三角形的面积公式是本题的解题关键.20、(1)yx2+x+2;(2);(3)N点的坐标为:或()或()或()或()或或()【分析】(1)根据对称轴公式列出等式,带点到抛物线列出等式,解出即可;(2)先求出A、B、C的坐标,从而求出D的坐标算出BD的解析式,根据题意画出图形,设出P、G的坐标代入三角形的面积公式得出一元二次方程,联立方程组解出即可;(3)分类讨论当AM是正方形的边时,()当点M在y轴左侧时(N在下方), ()当点M在y轴

20、右侧时,当AM是正方形的对角线时,分别求出结果综合即可【详解】(1)抛物线yx2+bx+c的对称轴为直线x,与x轴交于点B(1,0),解得,抛物线的解析式为:yx2+x+2;(2)抛物线yx2x+2与x轴交于点A和点B,与y轴交于点C,A(1,0),B(1,0),C(0,2)点D为线段AC的中点,D(2,1),直线BD的解析式为:,过点P作y轴的平行线交直线EF于点G,如图1,设点P(x,),则点G(x,),当x时,S最大,即点P(,),过点E作x轴的平行线交PG于点H,则tanEBAtanHEG,故为最小值,即点G为所求联立 解得,(舍去), 故点E(,),则PG的最小值为PH(3)当AM是

21、正方形的边时,()当点M在y轴左侧时(N在下方),如图2,当点M在第二象限时,过点A作y轴的平行线GH,过点M作MGGH于点G,过点N作HNGH于点H,GMA+GAM90,GAM+HAN90,GMAHAN,AGMNHA90,AMAN,AGMNHA(AAS),GANH1,AHGM,即y, 解得x,当x时,GMx(1),yNAHGM,N(,)当x时,同理可得N(,),当点M在第三象限时,同理可得N(,)()当点M在y轴右侧时,如图3,点M在第一象限时,过点M作MHx轴于点H设AHb,同理AHMMGN(AAS),则点M(1+b,b)将点M的坐标代入抛物线解析式可得:b(负值舍去)yNyM+GMyM+

22、AH,N(,)当点M在第四象限时,同理可得N(,-)当AM是正方形的对角线时,当点M在y轴左侧时,过点M作MG对称轴于点G,设对称轴与x轴交于点H,如图1AHNMGN90,NAHMNG,MNAN,AHNNGN(AAS),设点N(,),则点M(,),将点M的坐标代入抛物线解析式可得, (舍去),N(,),当点M在y轴右侧时,同理可得N(,)综上所述:N点的坐标为:或()或()或()或()或或()【点睛】本题考查二次函数与一次函数的综合题型,关键在于熟练掌握设数法,合理利用相似全等等基础知识21、(1)证明见解析;(2)1【分析】(1)连接OB,由切线的性质可得OBPA,然后根据直径所对的圆周角为

23、直角得到CBD=90,再根据等角的余角相等推出BCD=BOA,由等量代换得到CBO=BOA,即可证平行;(2)先由勾股定理求出BD,然后由垂径定理得到DE,求出OE,再利用ABEDOE的对应边成比例,即可求出AE【详解】(1)如图,连接OB,直线PA与相切于点B,OBPA,PAO+BOA=90CD是的直径CBD=90,PDB+BCD=90又PAO=PDBBOA=BCDOB=OCBCD=CBOCBO=BOAOABC(2)半径为10, BD=由(1)可知CBD=90,OABCOEBD是的中点,DE=BD=,即【点睛】本题考查圆的综合问题,熟练掌握切线的性质与相似三角形的判定与性质是解题的关键22、

24、(1)Q(0,2)或(3,2)或Q(,-2)或Q(,-2);(2)一次函数,此时直线与直线BC之间的距离为【分析】(1)根据可求得Q点的纵坐标,将Q点的纵坐标代入求得的二次函数解析式中求出Q点的横坐标,即可求得Q点的坐标;(2)根据两直线平行可得直线l的一次项系数,因为直线与抛物线只有一个交点,所以联立它们所形成的方程组有两个相同的解可求得直线l的常数项,即可得到它的解析式.利用等面积法可求得原点距离两直线的距离,距离差即为直线与直线BC之间的距离.【详解】解:(1)对于一次函数,当x=0时,y=2,所以C(0,2),当y=0时,x=4,所以B(4,0). 则,将A、B带入二次函数解析式得,解

25、得,二次函数解析式为:,当y=2时,解得,所以,当y=-2时,解得,所以,故Q(0,2)或(3,2)或Q(,-2)或Q(,-2).(2)根据题意设一次函数, 直线与二次函数的图像有且只有一个公共点只有一个解,整理得,解得b=4, 一次函数如下图,直线l与坐标轴分别相交于D,E,过O作直线BC的垂线与BC和DE相交于F和G,对于一次函数,当x=0时,y=4,故D(0,4),当y=0时,x=8,故E(8,0).,即,解得, ,即,解得,.此时直线与直线BC之间的距离为.【点睛】本题考查一次函数与二次函数的综合应用.(1)中能利用求得Q点的纵坐标是解决此问的关键;(2)中需理解两个一次函数平行k值相

26、等;一次函数与二次函数交点的个数取决于联立它们所形成的一元二次方程的解得个数;掌握等面积法在实际问题中的应用.23、(1)(2)当x=52时,w有最大值为2640.【分析】(1)售单价每上涨1元,每天销售量减少10本,则售单价每上涨(x-44)元,每天销售量减少10(x-44)本,所以y=300-10(x-44),然后利用销售单价不低于44元,且获利不高于30%确定x的范围;(2)利用利用每本的利润乘以销售量得到总利润得到w=(x-40)(-10 x+740),再把它变形为顶点式,然后利用二次函数的性质得到x=52时w最大,从而计算出x=52时对应的w的值即可【详解】(1)由题意得:y=300

27、-10(x-44)=-10 x+740,每本进价40元,且获利不高于30%,即最高价为52元,即x52,故:44x52,(2)w=(x-40)(-10 x+740)=-10(x-57)2+2890,当x57时,w随x的增大而增大,而44x52,所以当x=52时,w有最大值,最大值为2640,答:将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润2640元【点睛】此题考查二元一次函数的应用,二次函数的应用最大销售利润的问题常利函数的增减性来解答,解题关键在于确定变量,建立函数模型,然后结合实际选择最优方案其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=时取得24、(1)3;(2)a=-4,b=-6,c=-8.【解析】(1)设,可得,代

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论