版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有、的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是()ABCD2下列事件的概率
2、,与“任意选个人,恰好同月过生日”这一事件的概率相等的是( )A任意选个人,恰好生肖相同B任意选个人,恰好同一天过生日C任意掷枚骰子,恰好朝上的点数相同D任意掷枚硬币,恰好朝上的一面相同3如图,在ABC中,AB6,AC8,BC9,将ABC沿图中的线段剪开,剪下的阴影三角形与原三角形不相似的是()ABCD4如图,在平行四边形中:若,则( )ABCD5如图,在正方形ABCD中,G为CD边中点,连接AG并延长,分别交对角线BD于点F,交BC边延长线于点E若FG2,则AE的长度为( )A6B8C10D126如图,O的半径OA等于5,半径OC与弦AB垂直,垂足为D,若OD3,则弦AB的长为( )A10B
3、8C6D47以下、四个三角形中,与左图中的三角形相似的是( )ABCD8如图,O的弦AB垂直平分半径OC,若AB=,则O的半径为( )AB2CD9如图,是的直径,是弦,点是劣弧(含端点)上任意一点,若,则的长不可能是( )A4B5C12D1310如图,中,弦相交于点,连接,若,则( )ABCD11如图,正方形ABCD中,点EF分别在BC、CD上,AEF是等边三角形,连AC交EF于G,下列结论:BAE=DAF=15;AG=GC;BE+DF=EF;SCEF=2SABE,其中正确的个数为()A1B2C3D412为测量如图所示的斜坡垫的倾斜度,小明画出了斜坡垫的侧面示意图,测得的数据有:,则该斜坡垫的
4、倾斜角 的正弦值是( )ABCD二、填空题(每题4分,共24分)13在中,圆在内自由移动.若的半径为1,则圆心在内所能到达的区域的面积为_.14如图,竖直放置的一个铝合金窗框由矩形和弧形两部分组成,AB=m,AD= 2m,弧CD所对的圆心角为COD=120现将窗框绕点B顺时针旋转横放在水平的地面上,这一过程中,窗框上的点到地面的最大高度为_m15如图,的对角线交于O,点E为DC中点,AC=10cm,OCE的周长为18cm,则的周长为_16已知ABC 与DEF 相似,相似比为 2:3,如果ABC 的面积为 4,则DEF 的面积为_17已知实数x,y满足,则x+y的最大值为_18如图,中,_三、解
5、答题(共78分)19(8分)某校九年级学生参加了中考体育考试为了了解该校九年级(1)班同学的中考体育成绩情况,对全班学生的中考体育成绩进行了统计,并绘制出以下不完整的频数分布表(如表)和扇形统计图(如图),根据图表中的信息解答下列问题:分组分数段(分)频数A36x412B41x465C46x5115D51x56mE56x6110(1)m的值为 ;(2)该班学生中考体育成绩的中位数落在 组;(在A、B、C、D、E中选出正确答案填在横线上)(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的
6、概率20(8分)某商场销售一种电子产品,进价为元/件.根据以往经验:当销售单价为元时,每天的销售量是件;销售单价每上涨元,每天的销售量就减少件.(1)销售该电子产品时每天的销售量(件)与销售单价(元)之间的函数关系式为_;(2)商场决定每销售件该产品,就捐赠元给希望工程,每天扣除捐赠后可获得最大利润为元,求的值21(8分)如图,射线交一圆于点,射线交该圆于点,且 .(1)判断与的数量关系.(不必证明)(2)利用尺规作图,分别作线段的垂直平分线与的平分线,两线交于点(保留作图痕迹,不写作法),求证:平分.22(10分)如图,在ABC中,A30,C90,AB12,四边形EFPQ是矩形,点P与点C重
7、合,点Q、E、F分别在BC、AB、AC上(点E与点A、点B均不重合)(1)当AE8时,求EF的长;(2)设AEx,矩形EFPQ的面积为y求y与x的函数关系式;当x为何值时,y有最大值,最大值是多少?(3)当矩形EFPQ的面积最大时,将矩形EFPQ以每秒1个单位的速度沿射线CB匀速向右运动(当点P到达点B时停止运动),设运动时间为t秒,矩形EFPQ与ABC重叠部分的面积为S,求S与t的函数关系式,并写出t的取值范围23(10分)如图,有一直径是20厘米的圆型纸片,现从中剪出一个圆心角是90的扇形ABC(1)求剪出的扇形ABC的周长(2)求被剪掉的阴影部分的面积24(10分)小李要外出参加“建国7
8、0周年”庆祝活动,需网购一个拉杆箱,图,分别是她上网时看到的某种型号拉杆箱的实物图与示意图,并获得了如下信息:滑杆,箱长,拉杆的长度都相等,在上,在上,支杆,请根据以上信息,解决下列向题求的长度(结果保留根号);求拉杆端点到水平滑杆的距离(结果保留根号)25(12分)如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上(1)求抛物线的解析式;(2)在AC上方的抛物线上有一动点G,如图,当点G运动到某位置时,以AG,AO为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点G的坐标;(3)若抛物线上存在点P,使得ACP是以AC为直角边
9、的直角三角形,直接写出所有符合条件的点P的坐标26某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面设购买国旗图案贴纸袋(为正整数),则购买小红旗多少袋能恰好配套?请用含的代数式表示(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优
10、惠学校按(2)中的配套方案购买,共支付元,求关于的函数关系式现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?参考答案一、选择题(每题4分,共48分)1、A【分析】根据题意得到原几何体的主视图,结合主视图选择【详解】解:原几何体的主视图是:视图中每一个闭合的线框都表示物体上的一个平面,左侧的图形只需要两个正方体叠加即可故取走的正方体是故选A【点睛】本题考查了简单组合体的三视图,中等难度,作出几何体的主视图是解题关键.2、A【分析】根据概率的意义对各选项分析判断即可得解【详解】任选人,恰好同月过生日的概率为,A任选人,恰好生肖相同的概率为,B任选人,恰好同一
11、天过生日的概率为,C任意掷枚骰子,恰好朝上的点数相同的概率为,D任意掷枚硬币,恰好朝上的一面相同的概率为.故选:A.【点睛】本题考查了概率的意义,正确理解概率的含义是解决本题的关键3、B【分析】根据相似三角形的判定定理对各选项进行逐一判定即可【详解】A、根据两边成比例,夹角相等,故两三角形相似,故本选项错误;B、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;C、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误D、根据两边成比例,夹角相等,故两三角形相似,故本选项错误;故选:B【点睛】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.4、A【分析】先根据
12、平行四边形的性质得到AB=CD,ABCD,再计算出AE:CD=1:3,接着证明AEFCDF,然后根据相似三角形的性质求解【详解】四边形ABCD为平行四边形,AB=CD,ABCD,AECD,故选:A【点睛】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键5、D【解析】根据正方形的性质可得出ABCD,进而可得出ABFGDF,根据相似三角形的性质可得出=2,结合FG=2可求出AF、AG的长度,由ADBC,DG=CG,可得出AG=GE,即可求出AE=2AG=1【详解】解:四边形ABCD为正方形,AB=CD,ABCD, ABF=GDF,BAF=DGF,ABFGD
13、F,=2,AF=2GF=4,AG=2ADBC,DG=CG,=1,AG=GEAE=2AG=1故选:D【点睛】本题考查了相似三角形的判定与性质、正方形的性质,利用相似三角形的性质求出AF的长度是解题的关键6、B【解析】试题分析:由OC与AB垂直,利用垂径定理得到D为AB的中点,在直角三角形AOD中,由OA与OD的长,利用勾股定理求出AD的长,由AB=2AD即可求出AB的长OCAB,D为AB的中点,即AD=BD=0.5AB,在RtAOD中,OA=5,OD=3,根据勾股定理得:AD=4则AB=2AD=1故选B考点:垂径定理点评:此题考查了垂径定理,以及勾股定理,熟练掌握垂径定理是解本题的关键7、B【分
14、析】由于已知三角形和选择项的三角形都放在小正方形的网格中,设正方形的边长为1,所以每一个三角形的边长都是可以表示出,然后根据三角形的对应边成比例即可判定选择项【详解】设小正方形的边长为1,根据勾股定理,所给图形的边分别为,所以三边之比为A、三角形的三边分别为、,三边之比为:,故本选项错误; B、三角形的三边分别为、,三边之比为,故本选项正确; C、三角形的三边分别为、,三边之比为,故本选项错误;D、三角形的三边分别为、,三边之比为,故本选项错误故选:B【点睛】本题考查了相似三角形的判定,勾股定理的应用,熟练掌握网格结构,观察出所给图形的直角三角形的特点是解题的关键8、A【解析】试题分析:连接O
15、A,设O的半径为r,由于AB垂直平分半径OC,AB=,则AD=,OD=,在RtAOD中,OA2=OD2+AD2,即r2=()2+()2,解得r=考点:(1)垂径定理;(2)勾股定理9、A【分析】连接AC,如图,利用圆周角定理得到ACB=90,利用勾股定理得到AC=5,则5AP1,然后对各选项进行判断【详解】解:连接AC,如图,AB是O的直径,ACB=90,,点P是劣弧(含端点)上任意一点,ACAPAB,即5AP1故选:A【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半推论:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径10、
16、C【分析】根据圆周角定理可得,再由三角形外角性质求出,解答即可【详解】解:,又,故选:【点睛】本题考查的是圆周角定理的应用,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键11、C【解析】通过条件可以得出ABEADF而得出BAE=DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设EC=x,用含x的式子表示的BE、 EF,利用三角形的面积公式分别表示出SCEF和2SABE再通过比较大小就可以得出结论.【详解】四边形ABCD是正方形,AB=AD,B=D=90AEF等边三角形,AE=AF,EAF=60BAE+DAF=30在
17、RtABE和RtADF中,RtABERtADF(HL),BE=DF,BC=CD,BCBE=CDDF,即CE=CF,AC是EF的垂直平分线,AC平分EAF,EAC=FAC=60=30,BAC=DAC=45,BAE=DAF=15,故正确;设EC=x,则FC=x,由勾股定理,得EF=x,CG=EF=x,AG=AEsin60=EFsin60=2CGsin60=2CG,AG=CG,故正确;由知:设EC=x,EF=x,AC=CG+AG=CG+CG=,AB=,BE=ABCE=x=,BE+DF=2=(1)xx,故错误;SCEF=,SABE=BEAB=,SCEF=2SABE,故正确,所以本题正确的个数有3个,分
18、别是,故选C【点睛】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键12、A【分析】利用正弦值的概念,的正弦值=进行计算求解.【详解】解:在RtABC中,故选:A.【点睛】本题考查锐角三角函数的概念,熟练掌握正弦值的概念,熟记的正弦值=是本题的解题关键.二、填空题(每题4分,共24分)13、24【分析】根据题意做图,圆心在内所能到达的区域为EFG,先求出AB的长,延长BE交AC于H点,作HMAB于M,根据圆的性质可知BH平分ABC,故CH=HM,设CH=x=HM,根据RtAMH中利
19、用勾股定理求出x的值,作EKBC于K点,利用BEKBHC,求出BK的长,即可求出EF的长,再根据EFGBCA求出FG,即可求出EFG的面积.【详解】如图,由题意点O所能到达的区域是EFG,连接BE,延长BE交AC于H点,作HMAB于M,EKBC于K,作FJBC于J,AB=根据圆的性质可知BH平分ABC故CH=HM,设CH=x=HM,则AH=12-x,BM=BC=9,AM=15-9=6在RtAMH中,AH2=HM2+AM2即AH2=HM2+AM2(12-x)2=x2+62解得x=4.5EKAC,BEKBHC,即BK=2,EF=KJ=BC-BK-JC=9-2-1=6,EGAB,EFAC,FGBC,
20、EGFABC,FEGCAB,EFGACB,故,即解得FG=8圆心在内所能到达的区域的面积为FGEF=86=24,故答案为24.【点睛】此题主要考查相似三角形的判定与性质综合,解题的关键是熟知勾股定理、相似三角形的判定与性质.14、()【分析】连接OB,过O作OHBC于H,过O作ONCD于N,根据已知条件求出OC和OB的长即可【详解】连接OB,过O作OHBC于H,过O作ONCD于N,COD=120,CO=DO,OCD=ODC=30,ONCO,CN=DN=CD=AB=m,ON=CN=m,OC=1m,ONBC,四边形OHCN是矩形,CH=ON=m,OH=CN=m,BH=BC-CH=m,OB=m,在这
21、一过程中,窗框上的点到地面的最大高度为(+1)m,故答案为:(+1)【点睛】本题考查了垂径定理,矩形的性质和判定,勾股定理,掌握知识点是解题关键15、【分析】先利用平行四边形的性质得AO=OC,再利用三角形中位线定理得出BC=2OE,然后根据AC=10cm,OCE的周长为18cm,可求得BC+CD,即可求得的周长【详解】的对角线交于O,点E为DC中点,EO是DBC的中位线,AO=CO,CD=2CE,BC=2OE,AC=10cm,CO=5cm,OCE的周长为18cm,EO+CE=185=13(cm),BC+CD=26cm,ABCD的周长是52cm.故答案为:52cm.【点睛】本题主要考查平行四边
22、形的性质、三角形中位线定理,熟练掌握平行四边形的性质和三角形中位线定理是解答本题的关键16、1【解析】由ABC与DEF的相似,它们的相似比是2:3,根据相似三角形的面积比等于相似比的平方,即可得它们的面积比是4:1,又由ABC的面积为4,即可求得DEF的面积【详解】ABC与DEF的相似,它们的相似比是2:3,它们的面积比是4:1,ABC的面积为4,DEF的面积为:4=1故答案为:1【点睛】本题考查的知识点是相似三角形的性质,解题关键是掌握相似三角形的面积比等于相似比的平方定理17、4【解析】用含x的代数式表示y,计算x+y并进行配方即可.【详解】当x=-1时,x+y有最大值为4故答案为4【点睛
23、】本题考查的是求代数式的最大值,解题的关键是配方法的应用.18、18【分析】根据勾股定理和三角形面积公式得,再通过完全平方公式可得.【详解】因为中,所以 所以所以=64+36=100所以AB+BC=10所以AC+AB+BC=8+10=18故答案为:18【点睛】考核知识点:勾股定理.灵活根据完全平方公式进行变形是关键.三、解答题(共78分)19、(1)18;(2)D组;(3)图表见解析,【分析】(1)利用C分数段所占比例以及其频数求出总数即可,进而得出m的值;(2)利用中位数的定义得出中位数的位置;(3)利用列表或画树状图列举出所有的可能,再根据概率公式计算即可得解【详解】解:(1)由题意可得:
24、全班学生人数:1530%50(人);m5025151018(人);故答案为:18;(2)全班学生人数有50人,第25和第26个数据的平均数是中位数,中位数落在5156分数段,落在D段故答案为:D;(3)如图所示:将男生分别标记为A1,A2,女生标记为B1,A1A2B1A1(A1,A2)(A1,B1)A2(A2,A1)(A2,B1)B1(B1,A1)(B1,A2)共有6种等情况数,恰好选到一男一女的概率是【点睛】此题主要考查了列表法求概率以及扇形统计图的应用,根据题意利用列表法得出所有情况是解题关键20、(1);(2)a=1【分析】(1)利用“实际销售量=原销售量-10上涨的钱数”可得;(2)
25、根据单件利润减去捐赠数为最后单件利润,再根据销售利润等于单件利润乘以销售量即可求解【详解】(1) 由题意得,函数关系式为: (2)设每天扣除捐赠后可获得利润为w元,依题意得: -100,且抛物线的对称轴为直线,当y的最大值是1440,化简得:,解得:(不合题意,舍去), 答:的值为1【点睛】本题主要考查了二次函数的应用,根据销量与售价之间的关系得出函数关系式是解题关键21、(1)AC=AE;(2)图见解析,证明见解析【解析】(1)作OPAM,OQAN于Q,连接AO,BO,DO证APOAQO,由BC=DE,得CP=EQ后得证;(2)同AC=AE得ECM=CEN,由CE=EF得FCE=FEC=MC
26、E=CEN得证【详解】证明:(1)作OPAM于P,OQAN于Q,连接AO,BO,DO.,BC=DE,BP=DQ,又OB=OD,OBPODQ,OP=OQ.BP=DQ=CP=EQ.直角三角形APO和AQO中,AO=AO,OP=OQ,APOAQO.AP=AQ.CP=EQ,AC=AE.(2)作图如图所示 证明:AC=AE, 由于AF是CE的垂直平分线,且CF平分, CF=EF. 因此EF平分【点睛】本题考查了圆心角、弧、弦的关系, 全等三角形的判定与性质, 线段垂直平分线的性质, 等腰三角形的性质,综合性比较强,熟练掌握性质定理是解题的关键.22、(1)1;(2)y=x2+3x(0 x12);x=6时
27、,y有最大值为9;(3)S= 【分析】(1)由EFBC,可得,由此即可解决问题;(2)先根据点E为AB上一点得出自变量x的取值范围,根据30度的直角三角形的性质求出EF和AF的长,在在RtACB中,根据三角函数求出AC的长,计算FC的长,利用矩形的面积公式可求得S的函数关系式;把二次函数的关系式配方可以得结论;(3)分两种情形分别求解即可解决问题.【详解】解:(1)在RtABC中,AB=12,A=30,BC=AB=6,AC=BC=6,四边形EFPQ是矩形,EFBC,=,=,EF=1(2)AB=12,AE=x,点E与点A、点B均不重合,0 x12,四边形CDEF是矩形,EFBC,CFE=90,A
28、FE=90,在RtAFE中,A=30,EF=x,AF=cos30AE=x,在RtACB中,AB=12,cos30=,AC=12=6,FC=ACAF=6x,y=FCEF=x(6x)=x2+3x(0 x12);y=x(12x)=(x6)2+9,当x=6时,S有最大值为9;(3)当0t3时,如图1中,重叠部分是五边形MFPQN,S=S矩形EFPQSEMN=9t2=t2+9当3t6时,重叠部分是PBN,S=(6t)2,综上所述,S=【点睛】本题考查二次函数与三角形综合的知识,难度较大,需综合运用所学知识求解.23、(1)(10+5)cm;(1)50cm1【分析】(1)连接BC,首先证明BC是直径,求出
29、AB,AC,利用弧长公式求出弧BC的长即可解决问题(1)根据S阴S圆OS扇形ABC计算即可解决问题【详解】解:(1)如图,连接BCBAC90,BC是O的直径,BC10cm,ABAC,ABAC10,的长5,扇形ABC的周长(10+5)cm(1)S阴S圆OS扇形ABC10150cm1【点睛】本题考查了弧长计算和不规则图形的面积计算,熟练掌握弧长公式与扇形面积公式是解题的关键24、(1)cm;(2)cm.【解析】过作于,根据求出再求出CD,根据求出DE,即可求出AC;过作交的延长线于,根据,求出即可.【详解】解:过作于,过作交的延长线于,答:拉杆端点到水平滑杆的距离为【点睛】本题考查的是三角形的实际
30、应用,熟练掌握三角形的性质是解题的关键.25、(1)抛物线的解析式为y=x2+3x+4;(2)点G的坐标为(,);(3)点P(2,6)或(2,6)【分析】(1)由点A的坐标及OA=OC=4OB,可得出点B,C的坐标, 根据点A,B,C的坐标,利用待定系数法即可求出抛物线的解析式;(2)由二次函数的解析式利用二次函数的性质可得出抛物线的对称轴, 由AO的长度结合平行四边形的性质可得出点G的横坐标, 再利用二次函数图象上点的坐标特征,即可求出点G的坐标; (3)设点P的坐标为(m,-m2+3m+4),结合点A,C的坐标可得出AP2,CP2,AC2的值, 分ACP=90及PAC=90两种情况, 利用勾股定理即可得出关于m的一元二次方程,解之即可得出结论【详解】解:(1)点A的坐标是(4,0),OA=4,又OA=OC=4OB,OA=OC=4,OB=1,点C的坐标为(0,4),点B的坐标为(1,0).设抛物线的解析式为y=ax2+bx+c(a0),将A(4,0),B(1,0),C(0,4)代入y=ax2+bx+c
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 老旧小区管道疏通施工方案
- 2024年建筑瓷砖铺设承包合同
- 医疗机构员工考核制度指南
- 2024年度文化艺术品展览合同
- 防水施工方案在环保设计中的角色
- 未成年演员广告拍摄合同
- 04物流服务合同关于跨境电商物流的全面协议
- 2024年企业内部网络安全维护合同
- 电力行业双重预防机制安全管理制度
- 100以内加减法竖式计算单元练习口算题带答案
- 2024-2025学年上海市普陀区八年级(上)期中数学试卷
- 假期补课协议书
- 电子商务支付结算系统开发合同
- 服务质量、保证措施
- (必练)广东省军队文职(经济学)近年考试真题试题库(含答案)
- 含羞草天气课件
- 2024年安全生产知识竞赛考试题库及答案(共五套)
- 22《鸟的天堂》课件
- 农业灌溉装置市场环境与对策分析
- 新疆乌鲁木齐市第十一中学2024-2025学年八年级上学期期中道德与法治试卷
- 部编版小学五年级上册道法课程纲要(知识清单)
评论
0/150
提交评论