




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1用蓝色和红色可以混合在一起调配出紫色,小明制作了如图所示的两个转盘,其中一个转盘两部分的圆心角分别是120和240,另一个转盘两部分被平分成两等份,分别转动两个转盘,转盘停止后,指针指向的两个区域颜色恰能配成紫色的概率是()ABCD2有人预测2
2、020年东京奥运会上中国女排夺冠的概率是80%,对这个说法正确的理解应该是( ).A中国女排一定会夺冠B中国女排一定不会夺冠C中国女排夺冠的可能性比较大D中国女排夺冠的可能性比较小3已知,且的面积为,周长是的周长的,则边上的高等于( )ABCD4已知关于x的一元二次方程(k1)x22x+1=0有两个不相等的实数根,则k的取值范围是()Ak2Bk2Ck2Dk2且k15如图,是的直径,点是延长线上一点,是的切线,点是切点,若半径为,则图中阴影部分的面积为( )ABCD6如图,将矩形沿对角线折叠,使落在处,交于,则下列结论不一定成立的是( )ABCD7已知(1,y1),(2,y2),(3,y3)在二
3、次函数yx2+4x+c的图象上,则y1,y2,y3的大小关系正确的是()Ay1y2y3By3y2y1Cy3y1y2Dy1y3y28如图,某同学用圆规画一个半径为的圆,测得此时,为了画一个半径更大的同心圆,固定端不动,将端向左移至处,此时测得,则的长为( )ABCD9若点A(1,0)为抛物线y3(x1)2+c图象上一点,则当y0时,x的取值范围是()A1x3Bx1或x3C1x3Dx1或x310在下列图形中,既是中心对称图形又是轴对称图形的是( )A等边三角形B圆C等腰梯形D直角三角形11如图,在O中,弦AB6,半径OCAB于P,且P为OC的中点,则AC的长是()A2 B3C4D2 12下列事件是
4、必然事件的是( )A打开电视播放建国70周年国庆阅兵式B任意翻开初中数学书一页,内容是实数练习C去领奖的三位同学中,其中有两位性别相同D食用保健品后长生不老二、填空题(每题4分,共24分)13抛物线yx24x+3与x轴交于A、B,与y轴交于C,则ABC的面积_14如图,AB是O的弦,AB4,点C是O上的一个动点,且ACB45若点M,N分别是AB,BC的中点,则MN长的最大值是_15如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m,与树相距15m,则树的高度为_m.16我国古代数学著作增删算法统宗记载
5、“圆中方形”问题:“今有圆田一段,中间有个方池,丈量田地待耕犁,恰好三分在记,池面至周有数,每边三步无疑,内方圆径若能知,堪作算中第一”其大意为:有一块圆形的田,中间有一块正方形水池,测量出除水池外圆内可耕地的面积恰好72平方步,从水池边到圆周,每边相距3步远如果你能求出正方形的边长是x步,则列出的方程是_17如图,点A、B、C在半径为9的O上,的长为,则ACB的大小是_18关于x的一元二次方程(a1)x2+x+|a|1=0的一个根是0,则实数a的值为_三、解答题(共78分)19(8分)已知反比例函数y=的图象与一次函数y=kx+m的图象相交于点A(2,1)(1)分别求出这两个函数的解析式;(
6、2)当x取什么范围时,反比例函数值大于0;(3)若一次函数与反比例函数另一交点为B,且纵坐标为4,当x取什么范围时,反比例函数值大于一次函数的值;(4)试判断点P(1,5)关于x轴的对称点P是否在一次函数y=kx+m的图象上20(8分)如图,平面直角坐标系xOy中点A的坐标为(1,1),点B的坐标为(3,3),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点E(1)求点E的坐标;(2)求抛物线的函数解析式;(3)点F为线段OB上的一个动点(不与点O、B重合),直线EF与抛物线交于M、N两点(点N在y轴右侧),连接ON、BN,当四边形ABNO的面积最大时,求点N的坐标并求出四边
7、形ABNO面积的最大值21(8分)如图,矩形OABC中,A(6,0)、C(0,)、D(0,),射线l过点D且与x轴平行,点P、Q分别是l和x轴正半轴上动点,满足PQO=60(1)点B的坐标是 ;当点Q与点A重合时,点P的坐标为 ; (2)设点P的横坐标为x,OPQ与矩形OABC的重叠部分的面积为S,试求S与x的函数关系式及相应的自变量x的取值范围22(10分)在一个三角形中,如果有一边上的中线等于这条边的一半,那么就称这个三角形为“智慧三角形”(1)如图1,已知、是上两点,请在圆上画出满足条件的点,使为“智慧三角形”,并说明理由;(2)如图2,是等边三角形,以点为圆心,的半径为1画圆,为边上的
8、一动点,过点作的一条切线,切点为,求的最小值;(3)如图3,在平面直角坐标系中,的半径为1,点是直线上的一点,若在上存在一点,使得为“智慧三角形”,当其面积取得最小值时,求出此时点的坐标23(10分)小琴和小江参加学校举行的“经典诵读比赛活动,诵读材料有论语,三字经,弟子规(分别用字母依次表示这三个诵读材料),将这三个字母分别写在张完全相同的不透明卡片的正面上,把这张卡片背面朝上洗匀后放在桌面上,比赛时小琴先从中随机抽取一张卡片, 记录下卡精上的内容,放回后洗匀,再由小江从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛小琴诵读论语的概率是 请用列表法或画树状图(树形图)法求小琴和
9、小江诵读两个不同材料的概率24(10分)已知二次函数的顶点坐标为,且经过点,设二次函数图象与轴交于点,求点的坐标25(12分)如图,直线与双曲线在第一象限内交于两点,已知(1)求的值及直线的解析式(2)根据函数图象,直接写出不等式的解集(3)设点是线段上的一个动点,过点作轴于点是轴上一点,当的面积为时,请直接写出此时点的坐标26如图,一次函数yx+4的图象与反比例函数y(k为常数且k0)的图象交于A(1,3),B(b,1)两点(1)求反比例函数的表达式;(2)在x轴上找一点P,使PA+PB的值最小,并求满足条件的点P的坐标;(3)连接OA,OB,求OAB的面积参考答案一、选择题(每题4分,共4
10、8分)1、B【解析】列表如下: 红红蓝红 紫蓝紫 紫 共有9种情况,其中配成紫色的有3种,所以恰能配成紫色的概率=故选B2、C【分析】概率越接近1,事件发生的可能性越大,概率越接近0,则事件发生的可能性越小,根据概率的意义即可得出答案.【详解】中国女排夺冠的概率是80%,中国女排夺冠的可能性比较大故选C.【点睛】本题考查随机事件发生的可能性,解题的关键是掌握概率的意义.3、B【分析】根据相似三角形的周长比等于相似比可得两个三角形的相似比,根据相似三角形的面积比等于相似比的平方可求出ABC的面积,进而可求出AB边上的高【详解】,周长是的周长的,与的相似比为,SABC=,SABC=24,AB=8,
11、AB边上的高=6,故选:B【点睛】本题考查相似三角形的性质,相似三角形的周长比等于相似比;相似三角形的面积比等于相似比的平方;熟练掌握相关性质是解题关键4、D【分析】根据方程有两个不相等的实数根,得到一元二次方程的二次项系数不为零、根的判别式的值大于零,从而列出关于的不等式组,求出不等式组的解集即可得到的取值范围【详解】根据题意得:,且,解得:,且故选:D【点睛】本题考查了一元二次方程的定义以及根的判别式,能够准确得到关于的不等式组是解决问题的关键5、B【分析】连接OC,求出COD和D,求出边DC长,分别求出三角形OCD的面积和扇形COB的面积,即可求出答案【详解】连接OC,AO=CO,CAB
12、=30,COD=2CAB =60,DC切O于C,OCCD,OCD=90,D=90-COD =90-60=30,在RtOCD中,OCD=90,D=30,OC=4,阴影部分的面积是:故选:B【点睛】本题考查了扇形的面积,三角形的面积的应用,还考查了等腰三角形性质,三角形的内角和定理,切线的性质,解此题的关键是求出扇形和三角形的面积6、C【解析】分析:主要根据折叠前后角和边相等对各选项进行判断,即可选出正确答案详解:A、BC=BC,AD=BC,AD=BC,所以A正确B、CBD=EDB,CBD=EBD,EBD=EDB,所以B正确D、sinABE=,EBD=EDBBE=DEsinABE=由已知不能得到A
13、BECBD故选C点睛:本题可以采用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法7、D【分析】首先根据二次函数解析式确定抛物线的对称轴为x=1,再根据抛物线的增减性以及对称性可得y1,y1,y3的大小关系【详解】二次函数y=-x1+4x+c=-(x-1)1+c+4,对称轴为x=1,a0,x1时,y随x增大而增大,当x1时,y随x的增大而减小,(-1,y1),(1,y1),(3,y3)在二次函数y=-x1+4x+c的图象上,且-113,|-1-1|1-3|,y1y3y1故选D【点睛】本题考查了二次函数图象上点的坐标特征,以及二次函数的性质,关键是掌握二次函数
14、图象上点的坐标满足其解析式8、A【分析】ABO是等腰直角三角形,利用三角函数即可求得OA的长,过O作ODAB于点D,在直角AOD中利用三角函数求得AD的长,则AB=2AD,然后根据BB=AB-AB即可求解【详解】解:在等腰直角OAB中,AB=1,则OA=cm,AO=cm,AOD=120=60,过O作ODAB于点D则AD=AOsin60=2=则AB=2AD=2,故BB=AB-AB=2-1故选:A【点睛】本题考查了三角函数的基本概念,主要是三角函数的概念及运算,关键把实际问题转化为数学问题加以计算9、C【分析】根据点A(1,0)为抛物线y3(x1)2+c图象上一点,可以求得c的值,从而可以得到该抛
15、物线的解析式,然后令y0,求得抛物线与x轴的交点,然后根据二次函数的性质即可得到当y0时,x的取值范围【详解】解:点A(1,0)为抛物线y3(x1)2+c图象上一点,03(11)2+c,得c12,y3(x1)2+12,当y0时,3(x1)2+12=0,解得:x11,x23,又-30,抛物线开口向下,当y0时,x的取值范围是1x3,故选:C【点睛】本题考查抛物线与x轴的交点、二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答10、B【分析】根据轴对称图形与中心对称图形的概念对各选项分析判断即可【详解】解:A、等边三角形是轴对称图形,不是中心对称图形,故本
16、选项错误;B、圆是轴对称图形,也是中心对称图形,故本选项正确;C、等腰梯形是轴对称图形,不是中心对称图形,故本选项错误;D、直角三角形不一定是轴对称图形,也不是中心对称图形,故本选项错误;故选B【点睛】本题考查了轴对称图形与中心对称图形,识别轴对称图形的关键是寻找对称轴,图形两部分 沿对称轴折叠后可重合,识别中心对称图形的关键是寻找对称中心,旋转180后与原图重合11、A【分析】根据垂径定理求出AP,根据勾股定理求出OP,求出PC,再根据勾股定理求出即可【详解】解:连接OA,AB6,OCAB,OC过O,APBPAB3,设O的半径为2R,则POPCR,在RtOPA中,由勾股定理得:AO2OP2+
17、AP2,(2R)2R2+32,解得:R,即OPPC,在RtCPA中,由勾股定理得:AC2AP2+PC2,AC232+()2,解得:AC2,故选:A【点睛】考核知识点:垂径定理.构造直角三角形是关键.12、C【分析】根据必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,对每一项进行分析即可【详解】A. 打开电视播放建国70周年国庆阅兵式是随机事件,故不符合题意;B. 任意翻开初中数学书一页,内容是实数练习是随机事件,故不符合题意;C. 去领奖的三位同学中,其中有两位性别相同是必然事件,符合题意;
18、D. 食用保健品后长生不老是不可能事件,故不符合题意;故选C.【点睛】本题考查的是事件的分类,事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件二、填空题(每题4分,共24分)13、1【分析】先根据题意求出AB的长。再得到C点坐标,故可求解【详解】解:y0时,0 x24x+1,解得x11,x21线段AB的长为2,与y轴交点C(0,1),以AB为底的ABC的高为1,SABC211,故答案为:1【点睛】此题主要考查二次函数与几何综合,解题的关键是熟知函数与坐标轴交点的求解方法14、【分析】根据中位线定理得到MN的最大时,AC最大,当AC最大时是直径,从而求得直径后就可以求
19、得最大值【详解】解:点M,N分别是AB,BC的中点,当AC取得最大值时,MN就取得最大值,当AC时直径时,最大,如图,故答案为:【点睛】本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是利用中位线性质将MN的值最大问题转化为AC的最大值问题,难度不大15、7【解析】设树的高度为m,由相似可得,解得,所以树的高度为7m16、【分析】根据圆的面积-正方形的面积=可耕地的面积即可解答.【详解】解:正方形的边长是x步,圆的半径为()步列方程得:.故答案为.【点睛】本题考查圆的面积计算公式,解题关键是找出等量关系.17、20【分析】连接OA、OB,由弧长公式的可求得AOB,然后
20、再根据同弧所对的圆周角等于圆心角的一半可得ACB【详解】解:连接OA、OB,由弧长公式的可求得AOB=40,再根据同弧所对的圆周角等于圆心角的一半可得ACB=20故答案为:20【点睛】本题考查弧长公式;圆周角定理,题目难度不大,掌握公式正确计算是解题关键18、-1.【解析】分析:先把x=0代入方程求出a的值,然后根据二次项系数不能为0,把a=1舍去详解:把x=0代入方程得:|a|-1=0,a=1,a-10,a=-1故选A点睛:本题考查的是一元二次方程的解,把方程的解代入方程得到a的值,再由二次项系数不为0,确定正确的选项三、解答题(共78分)19、(1)y=,y=2x3;(2)x1;(3)x1
21、.5或1x2;(4)点P在直线上【详解】试题分析:(1)根据题意,反比例函数y=的图象过点A(2,1),可求得k的值,进而可得解析式;一次函数y=kx+m的图象过点A(2,1),代入求得m的值,从而得出一次函数的解析式;(2)根据(1)中求得的解析式,当y1时,解得对应x的取值即可;(3)由题意可知,反比例函数值大于一次函数的值,即可得2x3,解得x的取值范围即可;(4)先根据题意求出P的坐标,再代入一次函数的解析式即可判断P是否在一次函数y=kx+m的图象上试题解析:解:(1)根据题意,反比例函数y=的图象与一次函数y=kx+m的图象相交于点A(2,1),则反比例函数y=中有k=21=2,y
22、=kx+m中,k=2,又过(2,1),解可得m=3;故其解析式为y=,y=2x3;(2)由(1)可得反比例函数的解析式为y=,令y1,即1,解可得x1(3)根据题意,要反比例函数值大于一次函数的值,即2x3,解可得x1.5或1x2(4)根据题意,易得点P(1,5)关于x轴的对称点P的坐标为(1,5)在y=2x3中,x=1时,y=5;故点P在直线上考点:反比例函数与一次函数的交点问题20、(1)E点坐标为(0, );(2) ;(3)四边形ABNO面积的最大值为,此时N点坐标为(, )【分析】(1)先利用待定系数法求直线AB的解析式,与y轴的交点即为点E;(2)利用待定系数法抛物线的函数解析式;(
23、3)先设N(m,m2m)(0m3),则G(m,m),根据面积和表示四边形ABNO的面积,利用二次函数的最大值可得结论【详解】(1)设直线AB的解析式为y=mx+n,把A(-1,1),B(3,3)代入得,解得,所以直线AB的解析式为yx+, 当x=0时,y0+,所以E点坐标为(0,); (2)设抛物线解析式为y=ax2+bx+c,把A(-1,1),B(3,3),O(0,0)代入得,解得,所以抛物线解析式为yx2x; (3)如图,作NGy轴交OB于G,OB的解析式为y=x,设N(m,m2m)(0m3),则G(m,m),GNm(m2m)m2+m,SAOB=SAOE+SBOE=1+3=3,SBONSO
24、NG+SBNG3(m2+m)m2+m所以S四边形ABNOSBON+SAOBm2+m+3 (m)2+当m时,四边形ABNO面积的最大值,最大值为,此时N点坐标为(,)【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求二次函数和一次函数的性质;理解坐标与图形性质,利用面积的和差计算不规则图形的面积21、(1)(6,),(3,);(2)【分析】(1)由四边形OABC是矩形,根据矩形的性质,即可求得点B的坐标;由正切函数,即可求得CAO的度数,由三角函数的性质,即可求得点P的坐标;(2)分别从当0 x3时,当3x5时,当5x9时,当x9时去分析求
25、解即可求得答案【详解】解:(1)四边形OABC是矩形,AB=OC,OA=BC,A(6,0)、C(0,2),点B的坐标为:(6,2);如图1:当点Q与点A重合时,过点P作PEOA于E,PQO=60,D(0,3),PE=3,AE=,OE=OA-AE=6-3=3,点P的坐标为(3,3);故答案为:(6,2),(3,3); (2)当0 x3时,如图,OI=x,IQ=PItan60=3,OQ=OI+IQ=3+x;由题意可知直线lBCOA,EF=此时重叠部分是梯形,其面积为:S梯形=(EF+OQ)OC=(3+x)当3x5时,如图AQ=OIIOOA=x36=x3AH=(x3)S=S梯形SHAQ=S梯形AHA
26、Q=(3+x)当5x9时,如图CEDP S=(BE+OA)OC=(12)当x9时,如图AHPIS=OAAH=综上:【点睛】此题考查了矩形的性质,相似三角形的判定与性质、等腰三角形的性质以及直角三角形的性质等知识此题综合性较强,难度较大,注意数形结合思想与分类讨论思想的应用22、(1)见解析;(2);(1)或【分析】(1)连接AO并且延长交圆于,连接AO并且延长交圆于,即可求解;(2)根据MN为的切线,应用勾股定理得,所以OM最小时,MN最小;根据垂线段最短,得到当M和BC中点重合时,OM最小为,此时根据勾股定理求解DE,DE和MN重合,即为所求;(1)根据“智慧三角形”的定义可得为直角三角形,
27、根据题意可得一条直角边为1,当写斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为1,根据勾股定理可求得另一条直角边,再根据三角形面积可求得斜边的高,即点P的横坐标,再根据勾股定理可求点P的纵坐标,从而求解【详解】(1)如图1,点和均为所求理由:连接、并延长,分别交于点、,连接、,是的直径,是“智慧三角形”同理可得,也是“智慧三角形”(2)是的切线,当最小时,最小,即当时,取得最小值,如图2,作于点,过点作的一条切线,切点为,连接,是等边三角形,是的一条切线,当点与重合时,与重合,此时(1)由“智慧三角形”的定义可得为直角三角形,根据题意,得一条直角边.当最小时,的面积
28、最小,即最小时如图1,由垂线段最短,可得的最小值为1.过作轴,在中,故符合要求的点坐标为或【点睛】本题考查了圆与勾股定理的综合应用,掌握圆的相关知识,熟练应用勾股定理,明确“智慧三角形”的定义是解题的关键23、;【分析】(1)由题意直接根据概率公式即可求解;(2)利用列表法展示所有9种等可能性结果,再找出小琴和小江诵读两个不同材料的结果数,然后根据概率公式求解【详解】解:小琴诵读论语的概率=;故答案为方法一, 列表如下小琴小江共有种等可能情况,两人选中不同材料的有种,所以概率为(选中不同材料)方法二,画树状图如下共有种等可能情况,两人选中不同材料的有种,所以概率为(选中不同材料).【点睛】本题考查列表法与树状图法即利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率24、点的坐标为:【分析】以顶点式设函数解析式,将点代入,求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公园栈道合同样本
- 企业医院转让合作合同样本
- 会所酒水销售合同样本
- 公司股质押合同样本
- 出境游合同标准文本
- 企业用地出租合同标准文本
- 储存油库租赁合同样本
- 中介合同样本样本
- 2025-2030中国汽车空调制冷剂行业市场深度发展趋势与前景展望战略研究报告
- 2025-2030中国水性面层树脂行业发展动向及未来经营策略建议研究报告
- DBJ50-T-398-2021 城轨快线施工质量验收标准
- 天津市建设工程设计合同(专业建设工程)(JF-2015-072)
- 全过程咨询管理服务方案
- 幼儿故事《春天的声音》
- 汽车收音机天线的参数
- 包装设计外文文献翻译最新译文
- 工厂致全体员工一份感谢信
- 怎样做一名合格的高校中层领导干部( 54页)
- 中国铁路总公司《铁路技术管理规程》(普速铁路部分)
- 幼儿园绘本故事PPT:《小红帽》
- 一年级下册数学6.6两位数减一位数、整十数(不退位减)人教版
评论
0/150
提交评论