精品试题北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组同步练习试题(含详细解析)_第1页
精品试题北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组同步练习试题(含详细解析)_第2页
精品试题北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组同步练习试题(含详细解析)_第3页
精品试题北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组同步练习试题(含详细解析)_第4页
精品试题北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组同步练习试题(含详细解析)_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第二章一元一次不等式和一元一次不等式组同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若ab,则()Aa1bBb+1aC2a+12b+1Da1b+12、如图,一次函数yax+b的图象交x轴于点(2

2、,0),交y轴与点(0,4),则下面说法正确的是()A关于x的不等式ax+b0的解集是x2B关于x的不等式ax+b0的解集是x2C关于x的方程ax+b0的解是x4D关于x的方程ax+b0的解是x23、如图,一次函数(为常数,且)的图像经过点,则关于的不等式的解集为( )ABCD4、若ab,则下列式子正确的是()AB3a3bC3a3bDa3b35、解集如图所示的不等式组为()ABCD6、若整数a使得关于x的方程的解为非负数,且使得关于y的一元一次不等式组至少有3个整数解则所有符合条件的整数a的和为( )A23B25C27D287、不等式4x-80的解集是( )Ax-2Bx-2Cx2Dx28、某种

3、商品进价为20元,标价为30元出售,商场规定可以打折销售,但其利润率不能少于5%,这种商品最多可以按几折销售?设这种商品打x折销售,则下列符合题意的不等式是( )A30 x20205%B30 x20205%C3020205%D3020205%9、下列四个说法:若ab,则a2b2;若|m|+m0,则m0;若1m0,则m2m;两个四次多项式的和一定是四次多项式其中正确说法的个数是()A4B3C2D110、若xy成立,则下列不等式成立的是()Ax+24yC3x3yDx23m+2的解集为x1-参考答案-一、单选题1、C【分析】举出反例即可判断A、B、D,根据不等式的性质即可判断C【详解】解:A、若a0

4、.5,b0.4,ab,但是a1b,不符合题意;B、若a3,b1,ab,但是b+1a,不符合题意;C、ab,2a+12b+1,符合题意;D、若a0.5,b0.4,ab,但是a1b+1,不符合题意故选:C【点睛】此题考查不等式的性质,对性质的理解是解题的关键不等式的性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变;不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变2、D【分析】直接根据函数图像与x轴的交点,进行逐一判断即可得到答案【详解】解:A、由图象可

5、知,关于x的不等式ax+b0的解集是x2,故不符合题意;B、由图象可知,关于x的不等式ax+b0的解集是x2,故不符合题意;C、由图象可知,关于x的方程ax+b0的解是x2,故不符合题意;D、由图象可知,关于x的方程ax+b0的解是x2,符合题意;故选:D【点睛】本题主要考查了一次函数图像与x轴的交点问题,利用一次函数与x轴的交点求不等式的解集,解题的关键在于能够利用数形结合的思想求解3、A【分析】根据图像的意义当x=-3时,kx+b=2,根据一次函数的性质求解即可【详解】解:当x=-3时,kx+b=2,且y随x的增大而减小,不等式的解集,故选A【点睛】本题考查了一次函数与不等式的关系,一次函

6、数图像的性质,灵活运用数形结合思想确定不等式的解集是解题的关键4、D【分析】根据不等式的基本性质判断即可【详解】解:A选项,ab,故该选项不符合题意;B选项,ab,3a3b,故该选项不符合题意;C选项,ab,3a3b,故该选项不符合题意;D选项,ab,a3b3,故该选项符合题意;故选:D【点睛】本题考查了不等式的基本性质,掌握不等式的两边同时加上(或减去)同一个数或代数式,不等号的方向不变;不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘(或除以)同一个负数,不等号的方向改变是解题的关键5、A【分析】根据图象可得数轴所表示的不等式组的解集,然后依据不等式组解集的确定

7、方法“同大取大,同小取小,小大大小中间找,大大小小无处找”,依次确定各选项的解集进行对比即可【详解】解:根据图象可得,数轴所表示的不等式组的解集为:,A选项解集为:,符合题意;B选项解集为:,不符合题意;C选项解集为:,不符合题意;D选项解集为:,不符合题意;故选:A【点睛】题目主要考查不等式组的解集在数轴上的表示及解集的确定,理解不等式组解集的确定方法是解题关键6、B【分析】表示出不等式组的解集,由不等式至少有四个整数解确定出a的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a的值,进而求出之和【详解】解:,解不等式得:,解不等式得:不等式组的解集为:,由不等式组至少有3个

8、整数解, ,即整数a2,3,4,5,解得:,方程的解为非负数,得到符合条件的整数a为3,4,5,6,7,之和为25故选B【点睛】此题考查了解一元一次方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键7、D【分析】根据题意先移项,再把x的系数化为1即可得出答案【详解】解:不等式4x-80,移项得,4x8,把x的系数化为1得,x2故选:D【点睛】本题考查的是解一元一次不等式,熟练掌握解一元一次不等式的基本步骤是解答此题的关键8、C【分析】根据题意易得这种商品的利润为3020,然后根据“其利润率不能少于5%”可列出不等式【详解】解:设这种商品打x折销售,由题意得:3020205%;故选C【

9、点睛】本题主要考查一元一次不等式的应用,解题的关键是熟练掌握销售中的利润问题9、C【分析】根据题意分别利用相反数的性质以及绝对值的代数意义和多项式的加法进行判断即可【详解】解:若ab,则a2b2,说法正确;若|m|+m0,则m 0,说法错误;若1m0,则m2m,说法正确;两个四次多项式的和不一定是四次多项式,说法错误;正确,共有2个.故选:C.【点睛】本题考查相反数的性质和不等式性质以及绝对值的代数意义和多项式的加法,熟练掌握相关的概念是解题的关键.10、D【分析】不等式的性质1:在不等式的两边都加上或减去同一个数,不等号的方向不变,性质2:在不等式的两边都乘以或除以同一个正数,不等号的方向不

10、变,性质3:在不等式的两边都乘以或除以同一个负数,不等号的方向改变;根据不等式的基本性质逐一判断即可.【详解】解:A、不等式xy,不等式xy的两边都加上2,不等号的方向不变,即x+2y+2,原变形错误,故此选项不符合题意;B、不等式xy的两边都乘4,不等号的方向不变,即4x4y,原变形错误,故此选项不符合题意;C、不等式x3y,原变形错误,故此选项不符合题意;D、不等式xy的两边都减去2,不等号的方向不变,即x2y2,原变形正确,故此选项符合题意;故选:D【点睛】本题考查的是不等式的基本性质,掌握“不等式的基本性质”是解本题的关键.二、填空题1、【分析】解不等式组得到,再根据不等式组有4个整数

11、解,写出符合条件的整数解,据此解出a的取值范围【详解】解:解不等式组得,不等式组的整数解共有4个,不等式组的整数解分别为:-2,-1,0,1,故答案为:【点睛】本题考查一元一次不等式组的整数解,正确得出不等式组的整数解是解题关键2、a3【分析】由题意直接根据不等式组的解集的表示方法进行分析可得答案【详解】解:由题意得:a3,故答案为:a3【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键3、1m2【分析】根据左右两个天平的倾斜得出不等式即可;【详解】由第一幅图得m1,由第二幅图得m2,故1m2

12、;故答案是:1m2【点睛】本题主要考查了一元一次不等式的解集,准确分析计算是解题的关键4、 不等式基本性质1 不等式基本性质3 不等式基本性质2 不等式基本性质1; 【分析】(1)根据不等式基本性质1,不等式两边同时加上或减去一个数,不等号方向不变,求解即可;(2)根据不等式基本性质3,不等式两边同时乘以或除以一个负数,不等号方向改变,据此求解即可;(3)根据不等式基本性质2,不等式两边同时乘以或除以一个正数,不等号方向不变,求解即可;(4)根据不等式基本性质1,不等式两边同时加上或减去一个数,不等号方向不变,求解即可【详解】解:(1)如果x+25,那么,不等号两边同时减去2,不等号方向不变,

13、根据的是不等式基本性质1;(2)如果,不等号两边同时乘以,那么;根据是不等式基本性质3;(3)如果,不等号两边同时乘以,那么;根据是不等式基本性质2;(4)如果x-3-1,不等号两边同时加上3,那么;根据是不等式基本性质1;故答案为:,不等式基本性质1;,不等式基本性质3;,不等式基本性质2;,不等式基本性质1【点睛】此题考查了不等式的基本性质,解题的关键是掌握不等式的基本性质5、8080【分析】设A种盲盒的价格为元,则B种盲盒的价格为元,A种盲盒的数量为个,则,B种盲盒的数量为,设上午种盲盒售出个,B种盲盒售出个,则上午的销售额为该天下午, A种盲盒的价格为即元,B种盲盒的价格为元,种盲盒售

14、出个,B种盲盒售出个,种盲盒售出个,B种盲盒售出个,进而求得下午的销售额,根据题意列出关系式,根据不等式确定的范围,进而根据一次函数的性质,确定的值,根据78的因数为2,3,13,进而求得的值,根据一次函数的性质确定取最大值时,下午的销售额取得最大值即可求解【详解】解:设A种盲盒的价格为元,则B种盲盒的价格为元,A种盲盒的数量为个,则,B种盲盒的数量为,根据题意可得,则设上午种盲盒售出个,B种盲盒售出个,则上午的销售额为该天下午, A种盲盒的价格为即元,B种盲盒的价格为元,种盲盒售出个,B种盲盒售出个,则下午的销售额为由上午的销售额比下午多390元,可得且,为整数,即且且由于下午的销售额为:设

15、,则当取最大值时候,销售额取得最大值,设,则当取得最大值,取得最大值,或或或, 或,或或,或解得或,或,或,或(舍去),当时,故答案为:【点睛】本题考查了一次函数的性质,不等式组的应用,掌握一次函数的性质是解题的关键三、解答题1、(1)甲种品牌球拍的单价是50元,乙种品牌球拍的单价是40元(2)购买25副甲种品牌球拍最省钱【分析】(1)设甲种品牌球拍的单价是x元,乙种品牌球拍的单价是y元,根据“购买3副甲种品牌球拍和2副乙种品牌球拍共需230元;购买2副甲种品牌球拍和1副乙种品牌球拍共需140元”,即可得出关于x,y的二元一次方程组,解之即可得出甲、乙两种品牌球拍的单价;(2)设购买m副甲种品

16、牌球拍,则购买(100m)副乙种品牌球拍,根据乙种品牌球拍数量不超过甲种品牌球拍数量的3倍,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,设学校购买100副球拍所需费用为w元,利用总价单价数量,即可得出w关于m的函数关系式,再利用一次函数的性质,即可解决最值问题(1)解:设甲种品牌球拍的单价是x元,乙种品牌球拍的单价是y元,依题意得:3x+2y=2302x+y=140解得:答:甲种品牌球拍的单价是50元,乙种品牌球拍的单价是40元(2)解:设购买m副甲种品牌球拍,则购买(100m)副乙种品牌球拍,依题意得:100m3m,解得:m25设学校购买100副球拍所需费用为w元,则w50m+

17、40(100m)10m+4000100,w随m的增大而增大,当m25时,w取得最小值,购买25副甲种品牌球拍最省钱【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于m的函数关系式2、2x,所有整数解的和是0【分析】先求出两个不等式的解集,再求其公共解,然后写出范围内的整数【详解】解:解不等式得,x2,解不等式得,x,不等式组的解集是2x,原不等式组的整数解是-2,1,0,1,2,它的所有整数解的和是21+0+1+20【点睛】本题主要考查了一元一次不等式组的解法,并会根据

18、未知数的范围确定它所满足的特殊条件的值,一般方法是先解不等式组,再根据解集求出特殊值3、(1)甲型号手机每部进价为2000元,乙为1800元;(2)共有3种进货方案,分别是甲8台,乙12台;甲9台,乙11台;甲10台,乙10台;【分析】(1)设甲型号手机每部进价为元,乙为元,根据题意列出方程组,求解即可;(2)根据题意列出不等式组,求解即可得出方案【详解】解:(1)解:设甲型号手机每部进价为元,乙为元,由题意得,解得答:甲型号手机每部进价为2000元,乙为1800元(2)设甲型号进货台,则乙进货台,由题意可知解得故或9或10,则共有种进货方案:分别是甲8台,乙12台;甲9台,乙11台;甲10台

19、,乙10台【点睛】本题考查了二元一次方程的应用,一元一次不等式的应用,读懂题意,找准等量关系,列出相应的方程或不等式组是解本题的关键4、(1)食品有260箱,矿泉水有150箱;(2)共有3种运输方案,方案1:租用种货车3辆,种货车7辆,方案2:租用种货车4辆,种货车6辆,方案3:租用种货车5辆,种货车5辆;(3)政府应该选择方案1,才能使运费最少,最少运费是4950元【分析】(1)设食品有x箱,矿泉水有y箱,根据“品和矿泉水共410箱,且食品比矿泉水多110箱”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设租用A种货车m辆,则租用B种货车(10-m)辆,根据租用的10辆货车可以一次运送这批物质,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数即可得出各运输方案;(3)根据总运费=每辆车的运费租车辆数,可分别求出三个运输方案所需总运费,比较后

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论