版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、人教版八年级数学下册第十七章-勾股定理章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在RtABC中,ACB90,分别以AB,AC,BC为斜边作三个等腰直角ABD,ACE,BCF,图中阴影部
2、分的面积分别记为S1,S2,S3,S4,若已知RtABC的面积,则下列代数式中,一定能求出确切值的代数式是()AS4BS1+S4S3CS2+S3+S4DS1+S2S32、如图,高速公路上有两点A,B相距25km,C,D为两个乡镇,已知DA10km,CB15km,DAAB于点A,CBAB于点B,现需要在AB上建一个高速收费站E,使得C,D两个乡镇到E站的距离相等,则BE的长为( )A10kmB15kmC20kmD25km3、如图,在44的正方形网格中,每个小正方形的边长均为1,点A,B,C都在格点上,ADBC于点D,则AD的长为()AB2CD34、现有一楼房发生火灾,消防队员决定用消防车上的云梯
3、救人,如图(1)已知云梯最多只能伸长到15m,消防车高3m救人时云梯伸长至最长,在完成从12m高处救人后,还要从15m高处救人,这时消防车要从原处再向着火的楼房靠近的距离为( )A3米B5米C7米D9米5、如图,点P表示的数是1,点A表示的数是2,过点A作直线l垂直于PA,在直线l上取点B,使AB1,以点P为圆心,PB为半径画弧交数轴于点C,则点C所表示的数为( )ABCD6、如图,在ABC中,BC2,C45,若D是AC的三等分点(ADCD),且ABBD,则AB的长为( )ABCD7、如图,一圆柱高为8cm,底面半径为2cm,一只蚂蚁欲从点A爬到点B处吃食物,需要爬行的最短路程(取3)是( )
4、A10cmB12cmC14cmD4cm8、如图,一只蚂蚁沿着边长为4的正方体表面从点A出发,爬到点B,如果它运动的路径是最短的,则AC的长为( )A4+2B4C2D49、如图,点A在点O的北偏西的方向5km处,根据已知条件和图上尺规作图的痕迹判断,下列说法正确的是( )A点B在点A的北偏东方向5km处B点B在点A的北偏东方向5km处C点B在点A的北偏东方向km处D点B在点A的北偏东方向km处10、如图,ABC中,C90,AD平分BAC交BC于点D,DEAB于E,若AB10cm,AC6cm,则BED周长为( )A10cmB12cmC14cmD16cm第卷(非选择题 70分)二、填空题(5小题,每
5、小题4分,共计20分)1、已知在平面直角坐标系中A(2,0)、B(2,0)、C(0,2)点P在x轴上运动,当点P与点A、B、C三点中任意两点构成直角三角形时,点P的坐标为_2、如图,在RtABC中,C90,BC6cm,AC8cm,按图中所示方法将BCD沿BD折叠,使点C落在AB边的C点,那么ADC的面积是_ cm23、填空:(1)如图,圆柱的侧面展开图是_,点B的位置应在长方形的边CD的_,点A到点B的最短距离为线段_的长度(2)AB_4、如图,已知,直角中,从直角三角形两个锐角顶点所引的中线的长,则斜边AB之长为_5、如图,在中,A是直角,AB=3,AC=3,则BC的长为_三、解答题(5小题
6、,每小题10分,共计50分)1、已知:如图,在RtABC中,两直角边AC6,BC8(1)求AB的长;(2)求斜边上的高CD的长2、如图是一个直角三角形纸片,C90,AB13cm,BC5cm,将其折叠,使点C落在斜边上的点C处,折痕为BD(如图),求AC和DC的长3、如图,四边形中,(1)连接AC,求AC的长(2)求四边形的面积4、生态兴则文明兴,生态衰则文明衰“十三五”以来,青岛市坚持生态优先、绿色发展理念,持续改善生态环境如图现有施工遗留的一处空地,计划改造成绿地公园,已知A90,ABAD3米,BC10米,CD8米,已知每平方米的改造费用为200元,请问改造该区域需要花费多少元?5、如图,在
7、1010的正方形网格中,每个小正方形的边长为1已知点A、B都在格点上(网格线的交点叫做格点),且它们的坐标分别是A(2,-4)、B (3,-1)(1)点B关于y轴的对称点的坐标是 ;(2)若点C的坐标是(0,-2),将ABC先沿y轴向上平移4个单位长度后,再沿y轴翻折得到A1B1C1,画出A1B1C1,B1点的坐标是 ;(3)的面积为_;(4)在现有的网格中,到点B1距离为10的格点的坐标是 -参考答案-一、单选题1、A【分析】设AC=a,BC=b,由勾股定理分别求出AE、EC、CF、BF、AD、BD、ED、DC的值,再根据三角形面积逐项判断即可【详解】解:设AC=a,BC=b,SABC=ab
8、,AB=,在等腰直角三角形中,AE=EC=,CF=BF=,AD=BD=,在RtAED中,ED=,DC=EC-ED=,A:S4=AEED=ba=ab=ab=SABC,已知RtABC的面积,可知S4,故S4能求出确切值;B:设AC与BD交于点M, 则S3+SADM=SADC=CDAE=(a-b)a=,又S1+SADM=SADB=AD2=,(S1+SADM)-(S3+SADM)=S1-S3=-=,则S1-S3与b有关,求不出确切值:C:设AC交BD于点M,则SBFD=FDBF=ab=,SADM+S3=(a-b)a=(a2-abSBCM+S3=SBCD=CDBF=(a-b)b=(ab-b2),SADM
9、+S1=SADB=(a2+b2),SBCM+S1=SABC,S2=BF2=,S2+S3+S4=S梯形AEFB-SABD-SABC+S1,S2+S3+S4=S1S1无法确定,无法确定C;D:由B选项过程得S1-S3=,又S2=b2,得到:S1+S2-S3=b2+ab=b2+SABC,此时S1+S2-S3与b有关,无法求出确切值故选:A【点睛】本题主要考查勾股定理和直角三角形面积公式,关键是对知识的掌握和运用2、A【分析】根据题意设出的长为,再由勾股定理列出方程求解即可【详解】解:设,则,由勾股定理得:在中,在中,由题意可知:,解得:,BE=10km故选A【点睛】本题考查正确运用勾股定理,善于观察
10、题目的信息是解题以及学好数学的关键3、B【分析】首先由勾股定理得AB,AC,BC的三边长,从而有AB2+AC2BC2,得BAC90,再根据SABC,代入计算即可【详解】解:由勾股定理得:AB,AC,BC,AB2+AC225,BC225,AB2+AC2BC2,BAC90,SABC,AD2,故选:B【点睛】本题主要考查了勾股定理,通过勾股定理计算出三边长度,判断出BAC90是解题的关键4、A【分析】根据题意结合图形可得:m,m,m,m,在两个直角三角形和中,分别运用勾股定理求出,即可得出移动的距离【详解】解:如图所示:m,m,m,m,在中,m,在中,m,m,故选:A【点睛】题目主要考查勾股定理的应
11、用,理解题意,找出相应的线段运用勾股定理是解题关键5、D【分析】首先在直角三角形中,利用勾股定理可以求出线段PB的长度,然后根据PB=PC即可求出OC的长度,接着可以求出数轴上点C所表示的数【详解】解:,PB=PC,点C的数为,故选:D【点睛】此题主要考查了实数与数轴之间的对应关系,首先正确根据数在数轴上的位置判断数的符号以及绝对值的大小,再根据运算法则进行判断6、B【分析】作BEAC于E,根据等腰三角形三线合一性质可得AE=DE,根据C45,得出EBC=180-C-BEC=180-45-90=45,可得BE=CE,利用勾股定理求出CE=BE=2,根据D是AC的三等分点得出AE=DE=CD,求
12、出CD=1,利用勾股定理即可【详解】解:作BEAC于E,ABBD,AE=DE,C45,EBC=180-C-BEC=180-45-90=45,BE=CE, 在RtBEC中,CE=BE=2,D是AC的三等分点,CD=,AD=AC-CD=,AE=DE=CD,CE=CD+DE=2CD=2,CD=1,AE=1,在RtABE中,根据勾股定理故选B【点睛】本题考查等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段,掌握等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段是解题关键7、A【分析】先画出圆柱展开图形,最短路程是的长,是底面圆周长的一半,则,是高,根据勾股定理计算【详解】
13、解:如图所示,由勾股定理得:,故选:A【点睛】本题考查了圆柱的平面展开最短路径问题,将圆柱展开为矩形,利用勾股定理求对角线的长即为最短路径的长8、C【分析】将正方体展开,右边的正方形与前面正方形放在一个面上,此时AB最短,根据三角形中位线,求出CN的长,利用勾股定理求出AC的长即可【详解】解:将正方体展开,右边的正方形与前面正方形放在一个面上,展开图如图所示,此时AB最短,ANMN,CNBMCNBM2,在RtACN中,根据勾股定理得:AC2,故选:C【点睛】本题考查了平面展开-最短路径问题,涉及的知识有:三角形中位线,勾股定理,熟练求出CN的长是解本题的关键9、D【分析】过A作ACOM交ON于
14、C,作ADON,求出AB及DAB即可得到答案【详解】过A作ACOM交ON于C,作ADON,如图:MON=90,AOC=30,AOM=120,由作图可知,OB平分AOM,AOB=AOM=60,B=30,在RtAOB中,OB=2OA=10,AOC=30,ACO=90,CAO=60,DAB=90-BAC=CAO=60,B在A北偏东60方向km处,故选:D【点睛】本题考查作图-基本作图、方向角、角平分线的作法等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型10、B【分析】根据平分线的性质得出,由定理证明,得出,即可求出,由勾股定理算出,,计算即可得出答案【详解】,平分,在与中,在中,故选:B
15、【点睛】本题考查角平分线的性质、全等三角形的判定与性质以及勾股定理,掌握相关知识点是解题的关键二、填空题1、(0,0),(,0),(2,0)【分析】因为点P、A、B在x轴上,所以P、A、B三点不能构成三角形再分RtPAC和TtPBC两种情况进行分析即可【详解】解:点P、A、B在x轴上,P、A、B三点不能构成三角形设点P的坐标为(m,0)当PAC为直角三角形时,APC90,易知点P在原点处坐标为(0,0);ACP90时,如图,ACP90AC2PC2AP2,解得,m,点P的坐标为(,0);当PBC为直角三角形时,BPC90,易知点P在原点处坐标为(0,0);BCP90时,BCP90,COPB,PO
16、BO2,点P的坐标为(2,0)综上所述点P的坐标为(0,0),(,0),(2,0)【点睛】本题考查了勾股定理及其逆定理,涉及到了数形结合和分类讨论思想解题的关键是不重复不遗漏的进行分类2、6【分析】先根据勾股定理得到AB10cm,再根据折叠的性质得到DCDC,BCBC6cm,则AC4cm,在RtADC中利用勾股定理得(8x)2x242,解得x3,然后根据三角形的面积公式计算即可【详解】解:C90,BC6cm,AC8cm,AB10cm,将BCD沿BD折叠,使点C落在AB边的C点,BCDBCD,CBCD90,DCDC,BCBC6cm,ACABBC4cm,设DCxcm,则AD(8x)cm,在RtAD
17、C中,AD2AC2CD2,即(8x)2x242,解得x3,ACD90,ADC的面积ACCD436(cm2)故答案为6【点睛】本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应线段相等,对应点的连线段被折痕垂直平分也考查了勾股定理3、长方形【分析】(1)根据圆柱的展开图特点和两点之间,线段最短求解即可;(2)根据勾股定理求解即可【详解】解:(1)如图,圆柱的侧面展开图是长方形,点B的位置应在长方形的边CD的中点处,点A到点B的最短距离为线段AB的长度故答案为:长方形;中点处;AB;(2)由勾股定理得: 故答案为:【点睛】本题主要考查了圆柱的侧面展开图,两点之间线段最短,勾股定理,熟知相
18、关知识是解题的关键4、8【分析】设BC=x,AC=y,根据勾股定理列方程组,从而可求得斜边的平方,即求得斜边的长【详解】设BC=x,AC=y,直角三角形两个锐角顶点所引的中线在RtADC和RtBCE中,由勾股定理得:故答案为:8【点睛】注意此题的解题技巧:根据已知条件,在两个直角三角形中运用勾股定理列方程组求解的时候,注意不必分别求出未知数的值,只需求出两条直角边的平方和,运用勾股定理即可5、【分析】根据勾股定理可直接进行求解【详解】解:在中,A是直角,AB=3,AC=3,;故答案为【点睛】本题主要考查勾股定理,熟练掌握勾股定理是解题的关键三、解答题1、(1)10;(2)【分析】(1)由勾股定理求解即可;(2)由三角形面积得,则ABCD=ACBC,即可求解【详解】解:(1)由勾股定理得:AB10;(2)RtABC中,CD为斜边AB上的高,ABC的面积ABCDACBC,ABCDACBC,CD【点睛】本题考查了勾股定理以及三角形面积公式;由勾股定理求出AB的长是解题的关键2、,【分析】由题意可得,根据勾股定理求得,设,在中,根据勾股定理列方程求解即可【详解】解:由题意可得,根据勾股定理可得:,设,则,在中,即,解得,即【点睛】此题考查了利用勾股定理解直角三角形,涉及了折叠的性质,解题的关键是掌握勾股定理3、(1);(2)四边形的面积为36【分析】连接AC,根据勾股定理求出AC,根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度专利实施许可及技术转让合同2篇
- 足疗店技师合作协议1
- 医药销售协议
- 科普知识课件
- 国际磋商2024年度市场准入条件
- 2024版钢筋混凝土施工安全防护用品采购合同3篇
- 激励高二的教学课件教学课件教学
- 挖掘机买卖合同书范本
- 配电自动化系统设计与实施2024年度合同
- 个人承包2024年度库房消防演练合同3篇
- 急诊科护士的院内急救团队协作
- 生态环境安全隐患排查
- Elisa检测技术课件
- 社会责任SWOT分析
- 高速公路安全行车
- 测量系统分析课件
- 江苏省南京市联合体2023-2024学年七年级上学期期末数学试卷+
- 便利店商业计划书分享
- 婚嫁金满期返还险
- 幼儿园小朋友可爱卡通恐龙风格餐前播报餐前分享
- 大数据培训课件1
评论
0/150
提交评论