结构方程模型讲义_第1页
结构方程模型讲义_第2页
结构方程模型讲义_第3页
结构方程模型讲义_第4页
结构方程模型讲义_第5页
已阅读5页,还剩66页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、结构方程模型讲义第1页,共71页,2022年,5月20日,11点52分,星期三验证性因子分析 (CFA)验证性因子分析可以通过结构方程模型(Structure Equation Modeling, SEM)来实现它是以研究者最初构建的模型为基础,通过对数据的迭代计算来验证模型对数据的支持程度。(从一个初始估计出发寻找一系列近似解来解决问题)研究者可以根据理论和数据调整模型。如果模型拟合程度较高,则表明结构效度良好。验证性因子分析通过因子载荷来判断聚合效度,通过信赖区间检定法(Confidence Interval Test)和变异数抽取估值法(Variance Extracted Estima

2、te)来验证区分效度。信赖区间检验法就是考察两个因子之间的相关系数加减标准误的两倍是否包含1,如果不包含1,则表明数据有较高的区别效度(Anderson & Gerbing, 1988)。 GFI, t-, 2第2页,共71页,2022年,5月20日,11点52分,星期三EFA和CFA的区别第3页,共71页,2022年,5月20日,11点52分,星期三迭代数值分析中通过从一个初始估计出发寻找一系列近似解来解决问题的过程,为实现这一过程所使用的方法统称为迭代法。与迭代法相对应的是直接法(一次解法),即一次性解决问题。当遇到复杂问题时,特别是在未知量很多,无法找到直接解法,此时就通过迭代法来解决。

3、迭代是解决问题的一种基本方法,适合做重复性操作,可以对一定步骤进行重复执行,在每次执行这些步骤时,都从变量的原值推出它的一个新值。第4页,共71页,2022年,5月20日,11点52分,星期三变异数抽取检定法Variance extracted test如果因子的变异数抽取估计值(Variance Extracted Estimates) 该因子与其他因子的共同变异抽取值(相关系数的平方),则表明数据具有较高的辨别有效性(Fornell&Larcker,1981)。变异数抽取估计值:计算各因子非测量误差的变异数占变异数的比值。R2(判定系数coefficient of determinatio

4、n):已解释变异占总变异的百分比第5页,共71页,2022年,5月20日,11点52分,星期三 判定系数R2(Coefficient of Determination)第6页,共71页,2022年,5月20日,11点52分,星期三为何要学SEMSEM: Structural Equation Modeling结构方程建模:是基于变量的协方差矩阵(或相关系数矩阵)来分析变量之间关系的一种统计方法,亦称为协方差结构分析我们只学习线性结构方程模型LISREL, lInear Structural RELationship第7页,共71页,2022年,5月20日,11点52分,星期三协方差和相关系数协

5、方差的大小依赖于随机变量X和Y的单位。相关系数的取值范围-1,1第8页,共71页,2022年,5月20日,11点52分,星期三科学的最高目标1)把握因(cause)果(effect)关系2)把握因果关系的最有力手段3)科学也探索用相关方法考察因果关系4)统计分析技术按因果探索而发展。5)SEM是探索因果关系的一种相关研究方法第9页,共71页,2022年,5月20日,11点52分,星期三为何要用SEM1)回归的预测应用不要SEM2)回归的解释应用需要SEM3)潜在变量的问题需要SEM第10页,共71页,2022年,5月20日,11点52分,星期三潜在变量很多心理研究中涉及的变量,都不能准确、直接

6、地测量,这种变量称为潜变量(latent variable)例:智力、学习动机、家庭社会经济地位所以,我们退而求其次,用一些外显指标(observable indicators),去间接测量这些潜变量例:测量学生的家庭社会经济地位(潜变量),用学生父母教育程度、父母职业、父母收入等(外显指标)来测量。传统的统计分析方法不能妥善处理这些潜变量,而结构方程模型能同时处理潜变量及其指标。第11页,共71页,2022年,5月20日,11点52分,星期三潜在变量简言之,结构方程模型是一个包含面很广的数学模型,可用以分析一些涉及潜变量的复杂关系。许多流行的传统方法(如回归分析),虽然容许因变量含测量误差,

7、但需要假设自变量没有误差。例:用回归方法以生长时间预测某植物的高度(生长时间是自变量,高度是因变量),假设生长时间的测量不含测量误差,但高度容许测量误差。第12页,共71页,2022年,5月20日,11点52分,星期三因果问题1)SEM以相关数据评价假定的因果关系。2)何时能说X引起Y?3)SEM探究概率的而非确定论的因果。第13页,共71页,2022年,5月20日,11点52分,星期三何时能说X引起Y?X时间在先。(纵向设计)明确说明因果方向,比如不可逆,或者循环。 (同时测量设计) 常识、理论、经验研究的成果都可以成为说明的线索。 难以说明怎么办?X与Y之间的关系不因引进第三变量而消失 (

8、统计控制) 。第14页,共71页,2022年,5月20日,11点52分,星期三结构方程模型的结构结构方程模型可以分为测量方程(measurement)和结构方程(structural equation)两部分测量方程描述潜变量与指标之间的关系如家庭收入等指标与社会经济地位的关系结构模型描述潜变量之间的关系如社会经济地位与学业成就的关系第15页,共71页,2022年,5月20日,11点52分,星期三x1x212112y1y212112矩阵形式的方程式矩阵形式的方程式而且与无相关存在而且与无相关存在转成向量形式测量模型第16页,共71页,2022年,5月20日,11点52分,星期三LISREL应用

9、示例PRELIS主要用于对数据进行前期处理和初步分析处理连续性数据探索性因子分析多元回归分析第17页,共71页,2022年,5月20日,11点52分,星期三结构模型又称为潜在变量模型(latent variable models)或线性结构关系(linear structural relationships)结构模型主要是建立潜在变量与潜在变量之间的关系,相当类似于路径分析模型,惟独不同的是路径分析模型使用观察变量,而结构模型使用潜在变量。在结构模型中除了涉及外因潜在变量()、内因潜在变量(),也涉及潜在干扰,以表示。与之间的协方差矩阵以(psi)表示。内因潜在变量与内因潜在变量间的协方矩阵以

10、表示,其结构系数矩阵为。外因潜在变量与内因潜在变量间的回归系数以(gamma)表示,其结构系数矩阵为第18页,共71页,2022年,5月20日,11点52分,星期三处理连续性数据如何用菜单对连续性变量进行处理?读取EXCEL数据定义数据类型定义整体缺失值插入第19页,共71页,2022年,5月20日,11点52分,星期三读入其它格式数据文件选择File菜单:Import Data in Free FormatImport External Data in other Formats打开PSF窗口第20页,共71页,2022年,5月20日,11点52分,星期三定义变量类型软件将.sav或.xls

11、格式的数据文件读入并生成PSF文件时,变量默认为有序变量,你可以重新定义变量类别(例如,定义某变量为名义变量)点击PSF窗口中Data菜单的Define Variables选项激活Define Variables对话框从变量列表中选择变量以激活Define Variables对话框上的所有键点击Variable Type键打开Variable Types for对话框激活ordinal(也可选择其它按钮),选中Apply to all复选框点OK,回到Define Variables对话框再点击Define Variables对话框上OK键回到PSF窗口点击File菜单上的Save选项保存修改

12、后的数据文件*.psf第21页,共71页,2022年,5月20日,11点52分,星期三插入新变量点击Data菜单Insert Variables选项,打开对话框点击OK键,在光标的左边,一个新变量就被插入到数据文件中点击Data菜单Define Variables选项激活Define Variables对话框选中刚才插入的变量点击Rename键,键入新的变量名点击OK键回到Define Variables对话框点击Define Variables对话框中的OK键得到PSF窗口点击File菜单上Save as选项,在“文件名”字符区键入新的文件名这样,一个新变量被插入到原有的数据集中并存储为新的

13、文件名。但是,这个变量的所有值都是0第22页,共71页,2022年,5月20日,11点52分,星期三为新变量赋值例:使这个新变量代表变量A和变量B的和点击Transformation菜单上的Compute选项打开Compute对话框选中并用鼠标将新变量拖入Compute对话框中的灰色字符区点击“=”键选中并用鼠标将变量A拖入Compute对话框中的灰色字符区点击“+”键选中并用鼠标将变量B拖入Compute对话框中的灰色字符区点OK看到PSF窗口点击File菜单上save选项保存第23页,共71页,2022年,5月20日,11点52分,星期三处理缺失值删除含缺失值的观测对象,或者填充缺失值。如

14、何删除含缺失值的对象?Listwise deletion(成列删除,即删除所有含缺失值的观测对象)Pairwise deletion(成对删除,即计算两个变量的相关系数时,只使用两个变量都有数据的那些样本)第24页,共71页,2022年,5月20日,11点52分,星期三处理缺失值删除含缺失值的观测对象,或者填充缺失值。如何填补缺失值?匹配计算impute by matching多元计算multiple imputation第25页,共71页,2022年,5月20日,11点52分,星期三如何删除含缺失值的对象?成列删除定义整体缺失值,并成列删除打开PSF窗口,点Data菜单上Define Var

15、iables选项在变量列表中选择变量Group激活Define Variables对话框上的所有键点击Missing Values键打开Missing Values for Group对话框,在Global missing value对应的字符区键入9激活Deletion methods中的Listwise选项按钮点Ok,回Define Variables对话框点Ok,回PSF对话框第26页,共71页,2022年,5月20日,11点52分,星期三探索性因子分析复习:因子分析的主要功能是将具有错综复杂关系的观测变量综合为少数几个因子,以再现原始变量与因子之间的相互关系,同时还可以根据不同因子对变

16、量进行分类。因此,因子分析本质上是一种用来检测潜在结构是怎样影响观测变量的方法。因子分析主要有两种基本形式:探索性因子分析(EFA, Exploratory Factor Analysis)和验证性因子分析(CFA, Confirmatory Factor Analysis)第27页,共71页,2022年,5月20日,11点52分,星期三EFA和CFA当我们手中有原始数据资料,但纷繁复杂的表面关系让我们难以理清头绪的时候,EFA可以帮助我们找出事物内在的本质结构;而当我们头脑中已经有了明确的关系结构、清晰的思路,但仍对这一结构的正确与否有些怀疑,这时CFA可以帮助检验已知的特定结构是否按照预期

17、的方式产生作用。第28页,共71页,2022年,5月20日,11点52分,星期三探索性因子分析是在事先不知道影响因素的基础上,完全依据资料数据,利用统计软件以一定的原则进行因子分析,最后得出因子的过程。(因子结构未知)因此探索性主要是为了找出影响观测变量的因子个数,以及各个因子和各个观测变量之间的相关程度。第29页,共71页,2022年,5月20日,11点52分,星期三验证性因子分析验证性因子分析充分利用了先验信息,是在已知因子结构的情况下检验所搜集的数据资料是否按事先预定的结构方式产生作用。验证性因子分析的主要目的是检验事先定义因子的模型拟合实际数据的能力。进行验证性因子分析之前要求事先假设

18、因子结构,我们要做的是检验它是否与观测数据一致。第30页,共71页,2022年,5月20日,11点52分,星期三探索性因子分析的基本步骤收集观察变量获得协方差阵确定因子个数提取公共因子进行因子旋转解释因子结构获得因子得分用得到的因子解释原始变量第31页,共71页,2022年,5月20日,11点52分,星期三Factor Loading三个因子与各变量之间的相关系数,称为因子载荷量(loading)系数绝对值越大,与相应因子的相关强度越强。第32页,共71页,2022年,5月20日,11点52分,星期三因子旋转因子旋转:用一个正交阵右乘已经得到的因子载荷阵(由线性代数可知,一次正交变化对应坐标系

19、的一次旋转),使旋转后的因子载荷阵结构简化。旋转的目的:清晰的负载矩阵,以便研究者进行因子解释及命名。1. 方差最大化正交旋转(Varimax):使负载的方差在因子内最大因子与因子之间没有相关,因子轴之间的夹角等于90度2. 直接斜交转轴法(Direct Oblimin):使因子负载的差积(cross-products)最小化。 3. Promax 转轴法:将直交转轴(varimax)的结果再进行有相关的斜交转轴。因子负荷量取2,4,6次方以产生接近0但不为0的值,藉以找出因子间的相关,但仍保有最简化因素的特性。 2.3.与1.不同,因子与因子之间彼此有某种程度的相关,因素轴之间的夹角不是90

20、度第33页,共71页,2022年,5月20日,11点52分,星期三优缺点正交转轴的优点:因子之间提供的信息不会重叠,被试在某一个因子的分数与在其它因子的分数,彼此独立互不相关正交转轴的缺点:研究迫使因子之间不相关,但这种情况在实际的情境中往往并不常存在所以,有时会采用非正交转轴的方法。第34页,共71页,2022年,5月20日,11点52分,星期三探索性因子分析小结一般来说,如果没有坚实的理论基础支撑,有关观测变量内部结构,一般用探索性因子分析。先用探索性因子分析产生一个内部结构的理论,再在此基础上用验证性因子分析,但必须用分开的数据集来做。如果直接把探索性因子分析的结果放到同一数据的验证性因

21、子分析中,就仅仅是拟合数据,而不是检验理论结构。合理的做法:用一半数据做探索性因子分析,然后把析取的因子用在剩下的一半数据中做验证性因子分析。第35页,共71页,2022年,5月20日,11点52分,星期三验证性因子分析定义因子模型收集观测值获得相关系数矩阵根据数据拟合模型评价模型是否恰当与其它模型比较检验原始假设是否成立第36页,共71页,2022年,5月20日,11点52分,星期三验证性因子分析如何编程如何阅读结果拟合指数的介绍第37页,共71页,2022年,5月20日,11点52分,星期三Factor Analysis先有方块才有圈圈EFA先有圈圈才有方块CFA人文语文数学英语物理化学社

22、会科学Using statistical methods to identify the basic underlying variables (factors) that account for the correlation among test scoresTo explain why two tests are correlatedTo explain how the entire scale is organization第38页,共71页,2022年,5月20日,11点52分,星期三验证性因子分析例 :用17个题目测量350名学生的学习态度及取向,理论假设学习态度及取向分为5个维度

23、(1-4为A,5-8为B,9-11为C,12-14为D,15-17为E),且5个维度都分别相关,请问这假设是否符合实际数据?第39页,共71页,2022年,5月20日,11点52分,星期三思路1)首先根据理论假设(模型MA)画出路径图;(见图3-1)2)求得17题的相关矩阵;3)根据路径图写出LISREL的程序;4)RUN程序;5)看各种拟合指数是否理想;6)对模型进行修正;7)得到各种参数值。第40页,共71页,2022年,5月20日,11点52分,星期三结构方程模型的结构1.测量模型 x=x+ y= y+ 其中, :外源潜变量 :内生潜变量 x:外源指标 :x的误差项 y:内生指标 :y的

24、误差项 x:外源指标与外源潜变量的关系 y:内生指标与内生潜变量的关系第41页,共71页,2022年,5月20日,11点52分,星期三结构方程模型的结构2.结构模型 对于潜变量间的关系,可用结构方程 表示: =B+ :内生潜变量。 : 外源潜变量。 B:内生潜变量间的关系。 :外源潜变量对内生潜变量的影响。 : 结构方程的残差项。 第42页,共71页,2022年,5月20日,11点52分,星期三x1x212112y1y212112矩阵形式的方程式矩阵形式的方程式而且与无相关存在而且与无相关存在转成向量形式测量模式第43页,共71页,2022年,5月20日,11点52分,星期三x1x313111

25、31x2221x4x64614262x5552矩阵形式的方程式用协方差矩阵表示:转成向量形式: :与之间的协方差矩阵 :之间的协方差矩阵:外因观察变量的测量误差测量模式第44页,共71页,2022年,5月20日,11点52分,星期三路径图的图标规则1.路径图的概念在结构方程模型中用直观的图形表达各变量之间的关系,这种图形称为路径图。2.图标规则 1)用圆或椭圆表示潜变量或因子 2)用正方形或长方形表示观测变量或指标 3)单向箭头表示单向影响或效应 4)双向弧形箭头表示相关 5)单向箭头且无起始图形表示测量误差或未 被解释部分第45页,共71页,2022年,5月20日,11点52分,星期三LIS

26、REL数学方程常用符号的表示法及含义第46页,共71页,2022年,5月20日,11点52分,星期三(1-E1)(2-E2)第47页,共71页,2022年,5月20日,11点52分,星期三1234512345(1-E1)(2-E2)(1-E1)(2-E2)第48页,共71页,2022年,5月20日,11点52分,星期三结构方程模型的路径图TD X LX PH GA BE LY Y TE PS第49页,共71页,2022年,5月20日,11点52分,星期三结构方程模型的优点1.同时处理多个因变量2.允许自变量与因变量含测量误差3.同时估计因子结构和因子关系4.允许更大弹性的测量模型5.估计整个模

27、型的拟合程度第50页,共71页,2022年,5月20日,11点52分,星期三图3-1 学习态度及其取向模型MA第51页,共71页,2022年,5月20日,11点52分,星期三验证性因素分析程序的写法-11)数据输入: DA NI=17 NO=350 MA=KM KM SY DA为数据输入的命令,NI为观测变量数,NO为被试人数,MA为矩阵类型,KM为相关矩阵,SY为对称的。 2)模型建构: MO NX=17 NK=5 LX=FU,FI PH=ST TD=DI,FR PA LX4(10000) 4(01000) 3(00100) 3(00010) 3(00001) MO模型,NX观测变量X数目,

28、NK潜变量数, LX为X与的关系矩阵,FU为完整,FI为固定,PH为之间的关系矩阵,ST为对称,对角线为1,对角线外自由估计,TD为X的误差矩阵,第52页,共71页,2022年,5月20日,11点52分,星期三MO从MO开始,是对模型的建构和参数(parameter,PA)的设定其中描述了数个矩阵(LX-因子负荷矩阵NXNK,PH-因子间的协方差矩阵NKNK,TD-指标误差间的协方差矩阵NXNX)TD: Thelta-Delta第53页,共71页,2022年,5月20日,11点52分,星期三MO设定某些元素(参数)为固定(FI,fixed);某些元素自由估计(FR,free),代替路径图,去表

29、达变量及因子间关系简单模型而言,在两种情况下要将元素固定。第一种情况:希望某两个变量(指标或因子)间没有关系,将代表该关系的矩阵元素固定为0例:x1不从属,将该因子负荷()固定为0第二种情况:需要设定因子的度量单位。因为观察变量(指标)所隐含的因子本身没有单位,不设定其单位无法计算。做法有二:一:将所有因子的方差固定为1(或其它常数),固定方差法。二:在每个因子中选择一个负荷固定为1(或其它常数),固定负荷法。一般来说,模型中除了因设定因子的度量单位而固定的路径外,所有需要估计的参数(因子负荷、指标的误差方差、因子之间的相关系数等),都设定为自由,让LISREL去估计。第54页,共71页,20

30、22年,5月20日,11点52分,星期三验证性因素分析程序的写法-2DI,FR为对角线元素为自由,非对角线元素固定为0。PA LX为矩阵LX的模式 4(10000)表示连续4行格式相同,1为需要估计的参数(自由),0为固定,即参数值为0。3)结果输出OU MI SS SCOU为结果输出命令,MI为要求输出修正指数,SS表示要求输出参数的标准化解,SC表示输出参数的完全标准化解。第55页,共71页,2022年,5月20日,11点52分,星期三DA NI=17 NO=350 MA=KM KM SYMO NX=17 NK=5 LX=FU,FI PH=ST TD=DI,FR PA LX4(10000)

31、 4(01000) 3(00100) 3(00010)3(00001)OU MI SS SC第56页,共71页,2022年,5月20日,11点52分,星期三验证性因素分析程序的写法-44)验证性因素模型设定规则小结验证性因素模型涉及3个矩阵LX、PH、TD。LX中凡是表示X与 有从属关系的,均设定为自由,无从属关系的,均设定为固定,两种表达方法:LX=FU,FI,然后列出要自由的元素,FR LX 1 1 LX 2 1 LX 3 1 或用PA LX表达,凡自由的元素用1表示,凡固定的用0表示。PH若因子间允许相关,用PH=ST;若部分因子间允许相关,用PH=SY,FI;VA 1 PH1,1 PH

32、2,2 PH3,3 再在FR后列出有相关的元素。TD=DI,FR第57页,共71页,2022年,5月20日,11点52分,星期三结果输出和解释1)输入的变量与被试等数据2)参数设定3)迭代次数4)参数估计5)平方复相关系数6)拟合指数7)修正指数8)完全标准化解9)模型分析结果解释(见图3-2)第58页,共71页,2022年,5月20日,11点52分,星期三操作入门1.新建一个命令文件点击菜单“File”下的“New”,打开一个小窗口,点击“Syntax Only”并按“确定”。然后编写程序。2.打开一个命令文件点击菜单“File”下的“Open”,然后找到要打开的文件。第59页,共71页,2

33、022年,5月20日,11点52分,星期三图3-2 模型MA的参数估计值第60页,共71页,2022年,5月20日,11点52分,星期三模型修正-11)模型修正:删去Q4,将Q8归入 1,新模型为MB。2)按MB来修改程序DELETE Q4, Move Q8 to Factor ASE;1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17/MO NX=16 NK=5 PH=ST TD=DI,FRPA LX3(10000) 3(01000) 1(10000) 3(00100)3(00010) 3(00001)OU MI SS SC 第61页,共71页,2022年,5月2

34、0日,11点52分,星期三Confirmatory Factor Analysis Example 1Delete Q4, Move Q8 to Factor BDA NI=17 NO=350KM SY SE; 1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17/MO NX=16 NK=5 PH=ST TD=DI,FRPA LX3(1 0 0 0 0)3(0 1 0 0 0)1(1 0 0 0 0)3(0 0 1 0 0)3(0 0 0 1 0)3(0 0 0 0 1)OU MI SS SC第62页,共71页,2022年,5月20日,11点52分,星期三模型修正-2

35、3)模型MB的输出结果4)模型MB输出结果的解释(见图3-3)* 模型MB的Q8归属 1后,因子负荷很高(0.49), 2(94)=149.51 2 /df=1.5 RMSEA=0.040,NNFI=0.96,CFI=0.97。 以上结果说明模型MB较MA理想。第63页,共71页,2022年,5月20日,11点52分,星期三第64页,共71页,2022年,5月20日,11点52分,星期三模型修正-35)对MB作修正:即Q8改为同时归属A与B。新模型为Mc。其它程序不变,只改变PA LX Mc输出结果:Q8在因子A的负荷为3(10000) 0.54, 在因子B的负荷为-0.08。拟合3(01000) 指数与MB基本相同,综合考虑我1(11000) 们选择MB 。(见图3-4)3(00100)3(00010)3(00001)第65页,共71页,2022年,5月20日,11点52分,星期三结构方程模型的一些概念1.潜变量(latent variable):不能直接测量的变量,如智力、学业成就、动机、家庭社会经济地位

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论