




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、二、 压力测量压力:化工生产中,由气体或液体均匀垂直地作用于单位面积上的力。 化工生产中,通常遇到压力和真空度的测量。若压力不符合要求,不仅会影响生产效率,降低产品质量,还会造成严重生产事故。化学反应中,压力既影响物料平衡关系,也影响化学反应速度。所以,压力的测量与控制,对保证生产过程正常进行,达到高产、优质、低消耗和安全是十分重要的常见压力传感器外形 工业压力变送器数字压力变送器通用压力变送器隔离压力变送器高温压力变送器隔离压差变送器隔离液位变送器微压变送器电容压力变送器隔膜压力变送器绝压变送器双膜压差变送器微型探针压力计暖风空调压力计湿式压力变送器本安压力变送器OEM血压计OEM压力芯片三
2、种压力表示方法绝对压力 pa表压力 p负压或真空度 ph第一节 压力单位及测压仪表pa绝对压力零线pphpa大气压p01.01325105Pa绝对压力是指物体所受的实际压力。 表压是指一般压力表所测得的压力,它是高于大气压力的绝对压力与大气压力之差,即 真空度是指大气压与低于大气压的绝对压力之差,有时也称为负压,即 由于各种工艺设备和检测仪表通常是处于大气之中,本身就承受着大气压力,因此工程上通常采用表压或者真空度来表示压力的大小,一般的压力检测仪表所指示的压力也是表压或者真空度。除特殊说明之外,以后所提及的压力均指表压。 液柱式压力检测 液柱式压力检测是以液体静力学原理为基础的,它们一般采用
3、水银或水为工作液,用U型管进行测量,常用于较低压力、负压或压力差的检测。 p1 p2p1 p2h(a)(b) 特点:直观、可靠、准确度较高等,但U形管只能测量较低的压力或差压,为了便于读数,U形管一般是用玻璃做成,易破损,另外它只能进行现场指示。 用U形管进行压力检测,其误差来源主要有:温度误差由使用环境温度的变化引起的测量误差。 它主要包括两个方面:一是标尺长度随温度的变化(要求U形管材料的温度系数极小);二是工作液密度随温度的变化。例如水,当温度从10变到20时,其密度从999.8kg/m3减小到998.3kg/m3,相对变化量为0.15。安装误差当U形管安装不垂直时将会产生安装误差。例如
4、 若倾斜5,读数误差约0.38。 第二节 弹性式压力计弹性式压力检测是用弹性元件把压力转换成弹性元件位移的一种检测方法。 平薄膜 波纹膜 波纹管 单圈弹簧管 多圈弹簧管膜 片受压力作用产生位移,可直接带动传动机构指示。但是膜片的位移较小,灵敏度低,指示精度不高,一般为2.5级。膜片更多的是和其他转换元件合起来使用,通过膜片和转换元件把压力转换成电信号;波纹管的位移相对较大,一般可在其顶端安装传动机构,带动指针直接读数。其特点是灵敏高(特别是在低压区),常用于检测较低的压力(1.0106Pa),但波纹管迟滞误差较大,精度一般只能达到1.5级;弹簧管结构简单、使用方便、价格低廉,它使用范围广,测量
5、范围宽,可以测量负压、微压、低压、中压和高压,因此应用十分广泛。根据制造的要求,仪表精度最高可达0.15级。弹簧管和弹簧管压力表弹簧管是横截面呈非圆形(椭圆形或扁圆形),弯成圆弧状(中心角常为270)的空心管子。管子的一端为封闭,另一端为开口。闭口端作为自由端,开口端作为固定端。被测压力介质从开口端进入并充满弹簧管的整个内腔,由于弹簧管的非圆横截面,使它有变成圆形并伴有伸直的趋势而产生力矩,其结果使弹簧管的自由端产生位移,同时改变其中心角。位移量(中心角改变量)和所加压力有如下的函数关系: 式中0为弹簧管中心角的初始角;为受压后中心角的改变量;R为弹簧管弯曲圆弧的外半径;h为管壁厚度;a、b为
6、弹簧管椭圆形截面的长、短半轴。 1弹簧管 2拉杆 3扇形齿轮4中心齿轮 5指针 6面板7游丝 8调节螺钉 9接头图3-18 弹簧管压力表弹簧管自由端B的位移量一般很小,需要通过放大机构才能指示出来,为了加大弹簧管自由端的位移量,也可采用多圈弹簧管,其原理与单圈弹簧管相似。 单圈弹簧管压力表是工业现场使用最普遍的就地指示式压力检测仪表(也有电接点输出的弹簧管压力表) 弹簧管压力表结构简单、使用方便、价格低廉、测量范围宽,可以测量负压、微压、低压、中压和高压一般的工业用弹簧管压力表的精度等级为1.5级或2.5级,但根据制造的要求,其精度等级最高可达0.15级。 一、电容式差压变送器电容式差压变送器
7、采用差动电容作为检测元件主要包括测量部件和转换放大电路两部分: 差压电容膜盒电容-电流转换电路调零、零迁电路电流放大器反馈电路pCIiIfIzIo测量部分转换放大部分第三节 电气式压力计电容式压力变送器,目前在工业生产中应用非常广泛,其输出信号也是标准4 20mADC电流信号。电容式压力变送器是先将压力的变化转换为电容量的变化,然后进行测量的。电容式差压变送器的原理图可见传感器有左右固定极板,在两个固定极板之间是弹性材料制成的测量膜片,作为电容的中央动极板,在测量膜片两侧的空腔中充满硅油。电容式差压变送器的结构可以有效地保护测量膜片,当差压过大并超过允许测量范围时,测量膜片将平滑地贴靠在玻璃凹
8、球面上,因此不易损坏,与力矩平衡式相比,电容式没有杠杆传动机构,因而尺寸紧凑,密封性与抗振性好,测量精度相应提高,可达0.2级。 是应变片阻值变化量的测量电桥,图中R3和R4是两个阻值相等的精密固定电阻。UiEr1r2R3R4AB(b)测量电桥不受压时 r1= r2=r0 R3=R4=r 若应变片受压,则:r1= r0+r1;r2= r0+r2 (r1r2)由此可见,由压力作用时,r1和r2一减一增,使电桥由较大的输出;当环境温度发生变化时,r1、r2同时增减,不影响电桥的平衡。如果仪表能把电桥输出电压Ui进一步转换为标准信号输出,则该仪表即可称为应变式压力变送器。 结论:应变片式压检测仪表具
9、有较大的测量范围,被测压力可达几百MPa,并具有良好的动态性能,适用于快速变化的压力测量。但是,尽管测量电桥具有一定的温度补偿的作用,应变片式压力检测仪表仍有比较明显的温漂和时漂,因此,这种压力检测仪表较多地用于一般要求的动态压力检测,测量精度一般在0.51.0左右。 三、压阻式(扩散硅)压力/差压变送器 因电阻率变化引起阻值变化称为压阻效应。半导体材料的压阻效应比较明显。用作压阻式传感器的基片材料主要为硅片和锗片,由于单晶硅材料纯、功耗小、滞后和蠕变极小、机械稳定性好,而且传感器的制造工艺和硅集成电路工艺有很好的兼容性,以扩散硅压阻传感器作为检测元件的压力检测仪表得到了广泛的使用。 p2p1
10、硅杯图3-30 压阻式传感器示意图正压侧隔离膜片引出线负压侧隔离膜片硅油构成框图:扩散硅压阻传感器前置放大器调零电路VI转换PUSU01UZIO检测部分电磁放大部分测量部分扩散硅压阻传感器把被测差压P成比例地转换为不平衡电压US 1.负压室 2.正压室 3.硅杯4.引线 5.硅片Ri1Ri2Ri3Ri4测量部分惠斯顿电桥Ri1Ri2Ri3Ri4USRi1Ri2Ri3Ri4IS不受压时:Ri1Ri2Ri3Ri4R结论:压阻式压力传感器的主要优点是体积小,结构简单,其核心部分就是一个既是弹性元件又是压敏元件的单晶硅膜片。扩散电阻的灵敏系数是金属应变片的几十倍,能直接测量出微小的压力变化。此外,压阻
11、式压力传感器还具有良好的动态响应,迟滞小,可用来测量几千赫兹乃至更高的脉动压力。因此,这是一种发展比较迅速,应用十分广泛的一类压力传感器。 这种传感器的缺点则是扩散电阻存在温度效应,容易受环境温度的影响,有些厂家在传感器组件中提供了若干校正用的温度补偿电路,甚至把放大转换等电路集成在同一块单晶硅膜片上,从而可以大大提高传感器的基本性能。第四节 压力计的选用和安装 选用安装其它仪表也基本适应仪表精度 根据生产允许的最大误差来确定,即要求实际被测压力允许的最大绝对误差应小于仪表的基本误差。在选择时应坚持节约的原则,只要测量精度能满足生产的要求,就不必追求用过高精度的仪表。 例:有一压力容器在正常工
12、作时压力范围为0.40.6MPa,要求使用弹簧管压力表进行检测,并使测量误差不大于被测压力的4,试确定该表的量程和精度等级。 解: 由题意可知,被测对象的压力比较稳定,设仪表量程为 0AMPa ,则 根据工作压力的要求: 根据仪表的量程系列,可选用量程范围为01.0MPa的弹簧管压力表。 由题意,被测压力的允许最大绝对误差为:max=0.4*4%=0.016 MPa这就要求所选仪表的相对百分误差为: 0.016/(1-0)*100%=1.6%按照仪表的精度等级,可选择15级的压力表。 仪表类型正确选用仪表类型是保证仪表正常工作及安全生产的前提。主要应考虑以下几个方面:仪表的材料 压力检测(检测
13、仪表)的特点是压力敏感元件往往要与被测介质直接接触,因此在选择仪表材料的时候要综合考虑仪表的工作条件。输出信号类型只需观察压力变化的,可选如弹簧管压力表、液柱式压力计那样的直接指示型的仪表;如需将压力信号远传到控制室或其他电动仪表,则可选用电气式压力检测仪表或其他具有电信号输出的仪表;如果要检测快速变化的压力信号,则可选用电气式压力检测仪表,如压阻式压力传感器;如果控制系统要求能进行数字量通信,则可选用智能式压力检测仪表。 例如:对腐蚀性较强的介质应使用像不锈钢之类的弹性元件或敏感元件; 氨用压力表则要求仪表的材料不允许采用铜或铜合金,因为氨气对铜的腐蚀性极强; 又如氧用压力表在结构和材质上可
14、以与普通压力表完全相同,但要禁油,因为油进入氧气系统极易引起爆炸。 使用环境对爆炸性较强的环境,在使用电气压力仪表时,应选择防爆型压力仪表;对于温度特别高或特别低的环境,应选择温度系数小的敏感元件以及其他变换元件。 上述选型原则也适用于差压、流量、液位等其它检测仪表的选型一般压力测量仪表的安装无论选用何种压力仪表和采用何种安装方式,在安装过程中都应注意以下几点:压力仪表必须经检验合格后才能安装压力仪表的连接处,应根据被测压力的高低和被测介质性质,选择适当的材料作为密封垫圈,以防泄漏压力仪表尽可能安装在室温,相对湿度小于80,振动小,灰尘少,没有腐蚀性物质的地方,对于电气式压力仪表应尽可能避免受
15、到电磁干扰压力仪表应垂直安装。一般情况下,安装高度应与人的视线齐平,对于高压压力仪表,其安装高度应高于一般人的头部测量液体或蒸汽介质压力时,应避免液柱产生的误差,压力仪表应安装在与取压口同一水平的位置上,否则必须对压力仪表的示值进行修正导压管的粗细合适,一般为610mm,长度尽可能短,否则会引起测量迟缓压力仪表与取压口之间应安装切断阀,以便维修测量特殊介质时的压力测量仪表安装测量高温(60以上)流体介质的压力时,为防止热介质与弹性元件直接接触,压力仪表之前应加装U形管或盘旋管等形式的冷凝器,避免因温度变化对测量精度和弹性元件产生的影响。如图(a)、(b) (a)(b)测量高压流体介质的压力时,
16、安装时压力仪表表壳应朝向墙壁或者无人通过之处,以防发生以外。 测量腐蚀性介质的压力时,除选择具有防腐能力的压力仪表之外,还应加装隔离装置,利用隔离罐中的隔离液将被测介质和弹性元件隔离开来,如图(c)、(d) (c)(d)112233测量波动剧烈(如泵、压缩机的出口压力)的压力时,应在压力仪表之前加装针形阀和缓冲器,必要时还应加装阻尼器,如图(e) (e)4测量粘性大或易结晶的介质压力时,应在取压装置上安装隔离罐,使罐内和导压管内充满隔离液,必要时可采取保温措施,如图(f) (f)蒸汽测量含尘介质压力时,最好在取压装置后安装一个除尘器,如图(g)。 (g)5总之,针对被测介质的不同性质,要采取相
17、应的防热、防腐、防冻、防堵和防尘等措施差压变送器取压口的选择液体、气体、蒸汽? 被测介质为液体时,取压口应位于管道下半部与管道水平线成045角内,目的是保证引压管内没有气泡,两根引压管内液柱产生的附加压力可以相互抵消;问:能否从底部引出?为什么? 4545(a)液体 被测介质为气体时,取压口应位于管道上半部与管道垂直中心线成045角内,其目的时为了保证引压管中不积聚和滞留液体。 4545(b)气体 被测介质为蒸汽时,取压口应位于管道上半部与管道水平线成045角内。最常见的接法是从管道水平位置接出,并分别安装凝液罐,这样两根引压管内部都充满冷凝液,而且液位高度相同。 4545(c)蒸汽差压变送器
18、引压管的安装引压管应按最短距离敷设,引压管的弯曲处应该是均匀的圆角,曲率半径一般不小于引压管外径的10倍。引压管的管路应保持垂直,或者与水平线之间不小于1:10的倾斜度,必要时要加装气体、凝液、微粒收集器等设备,并定期排除收集物。 引压管内径与引压管长度引压管内径 引压管 mm 长度 m被测介质1.61.64.54.59水、水蒸气、干气体791013湿气体131313低中粘度油品131925脏液体252533在测量液体介质时,变送器只能安装在取样口之上时,在引压管的管路中应有排气装置,如图(a)所示,这样,即使有少量气泡,也不会对测量精度造成影响。在测量气体介质时,如果差压变送器只能安装在取样
19、口之下时,必须加装如图(b)所致的贮液罐和排放阀,克服因滞留液对测量精度产生影响。测量蒸汽时的引压管管路则如图(c)所示。 +11223311445516655777(a) (b) (c)1取压口 2放空阀 3贮气罐 4贮液罐5排放阀 6凝液罐 7差压变送器差压变送器本身的安装差压变送器通常必须安装切断阀1、2和平衡阀3,构成三阀组+2131、2切断阀 3平衡阀差压变送器是用来测量差压的,但如果正、负引压管上的两个切断阀不能同时打开或者关闭时,就会造成差压变送器单向受很大的静压力,有时会使仪表产生附加误差,严重时会使仪表损坏。为了防止差压计单向受很大的静压力,必须正确使用平衡阀。在启用差压变送
20、器时,应先开平衡阀3,使正、负压室连通,受压相同,然后再打开切断阀1、2,最后再关闭平衡阀3,变送器即可投入运行。差压变送器需要停用检修时,应先打开平衡阀,然后再关闭切断阀1、2。当切断阀1、2关闭,平衡阀3打开时,即可以对仪表进行零点校验。 第二章 测量仪表一、温度测量温度检测的主要方法和分类 热电偶及其测温原理 热电阻及其测温原理 温度变送器简介其它温度检测仪表简介 温度检测仪表的选用和安装 测温方式 测温仪表 测温范围 主要特点 接触式 膨胀式 玻璃液体 100600 结构简单、使用方便、测量准确、价格低廉;测量上限和精度受玻璃质量的限制,易碎,不能远传 双金属 80600 结构紧凑、可
21、靠;测量精度低、量程和使用范围有限 热电效应 热电偶 2001800 测温范围广、测量精度高、便于远距离、多点、集中检测和自动控制,应用广泛;需自由瑞温度补偿,在低温段测量精度较低 热阻效应 铂电阻 200600 测量精度高,便于远距离、多点、集中检测和自动控制,应用广泛;不能测高温 铜电阻 50150 半导体热敏电阻 50150 灵敏度高、体积小、结构简单、使用方便;互换性较差,测量范围有一定限制 非接触式 非接触式 辐射式 03500 不破坏温度场,测温范围大,响应块,可测运动物体的温度;易受外界环境的影响,标定较困难 1 温度检测方法和分类2 热电偶及其测温原理热电效应和热电偶 热电偶中
22、间导体定律 与 热电势的检测 热电偶的等值替代定律 和 补偿导线 标准化热电偶和分度表 热电偶冷端温度的处理 热电偶的结构型式 热电效应和热电偶 热电效应(热电偶测温的基本原理):任何两种不同的导体或半导体组成的闭合回路,如果将它们的两个接点分别置于温度各为 t 及 t0 的热源中,则在该回路内就会产生热电势。ABBA图3-37 热电偶示意图A BeAB(t0)eAB(t)eA(t,t0)eB(t,t0)图3-38 热电现象 t 端称为工作端(假定该端置于热源中),又称测量端或热端 t0端称为自由瑞,又称参考端或冷端这两种不同导体或半导体的组合称为热电偶每根单独的导体或半导体称为热电极 A B
23、eAB(t0)eAB(t)eA(t,t0)eB(t,t0)闭合回路中所产生的热电势由接触电势和温差电势两部分组成: 下标A表示正电极,B表示负电极,由于温差电势比接触电势小很多,常常把它忽略不计,这样热电偶的电势可表示为: 注意:如果下标次序改为eBA,则热电势e前面的符号也应相应改变,即式(i)就是热电偶测温的基本公式。当冷端温度t0一定时,对于确定的热电偶来说,eAB(t0)为常数,因此,其总热电势EAB(t,t0)就与温度t成单值函数对应关系,和热电偶的长短、直径无关。只要测量出热电势大小,就能判断被测温度的高低,这就是热电偶的温度测量原理。 重要结论: 1.如果组成热电偶的两种电极材料
24、相同,则无论热电偶冷、热两端的温度如何,闭合回路中的总热电势为零; 2.如果热电偶冷、热两端的温度相同,则无论两电极材料如何,闭合回路中的总热电势也为零 3.热电偶产生的热电势除了冷、热两端的温度有关之外,还与电极材料有关,也就是说由不同电极材料制成的热电偶在相同的温度下产生的热电势是不同的。 中间导体定律和热电势的测量热电偶的输出信号是毫伏信号,毫伏信号的大小不仅与冷、热两端的温度有关,还和热电偶的电极材料有关,理论上任何两种不同导体都可以组成热电偶,都会产生热电势。但如何来检测热电偶产生的毫伏信号呢?因为要测量毫伏信号,必须在热电偶回路中串接毫伏信号的检测仪表,那串接的检测仪表是否会产生额
25、外的热电势,对热电偶回路产生影响呢?答:不会产生影响的。tt0ABCC毫伏计如果断开冷端,接入第三种导体C,并保持A和C、B和C接触处的温度均为t0,则回路中的总热电势等于各接点处的接触电势之和: 中间导体定律tABCt0t0ABtt0当tt0时,有于是可得 同理还可以证明,在热电偶中接入第四种、第五种导体以后,只要接入导体的两端温度相同,接入的导体对原热电偶回路中的热电势均没有影响。根据这一性质,可以在热电偶回路中接入各种仪表和连接导线,只要保证两个接点的温度相同就可以对热电势进行测量而不影响热电偶的输出。 tt0ABCC毫伏计等值替代定律和补偿导线如果热电偶AB在某一温度范围内所产生的热电
26、势与热电偶CD在同一温度范围内所产生的热电势相等,即 ,则这两支热电偶在该温度范围内是可以相互替换的,这就是所谓的热电偶等值替代定律。 t0tAAABBBDCtt0tctc例 如左图,设 ,证明该回路的总热电势为 某热电偶,热端温度为t,冷端温度为tc,显然冷端温度难以实现恒定,怎么办?DC补偿导线冷端的延伸ttcAB热电偶被测设备生产现场t0毫伏计恒温环境AB可以把热电偶做得很长,一直到控制室。把冷端温度延伸到控制室,变为t0,恒定t0比较容易此时,测得的热电势为但热电偶一般为(较)贵重的金属,采用如图所示的延伸方式将需要大量的贵金属材料,不妥。如果选用一组较廉价的材料(C、D),且CD在一
27、定温度范围内所产生的热电势与热电偶AB在同一温度范围内所产生的热电势相等,就可以用CD来替代AB的延伸段。CD即为热电偶AB的补偿导线,通常CD采用比热电偶电极材料更廉价的两种金属材料做成,一般在0100范围内要求补偿导线要与被补偿的热电偶具有几乎完全相同的热电性质。在选择和使用补偿导线时,要和热电偶的型号相匹配,注意极性不能接错,热电偶与补偿导线连接处的温度一般不能高于100。 标准化热电偶和分度号从理论上分析,似乎任何两种不同的导体都可以组成热电偶,用来测量温度。但实际情况并非如此,为了保证在工业现场应用可靠,并具有足够的精度,热电偶的电极材料在被测温度范围内应满足: 热电性质稳定、物理化
28、学性能稳定、热电势随温度的变化率要大、热电势与温度尽可能成线性对应关系、具有足够的机械强度、复制性和互换性好等要求,目前在国际上被公认的热电偶材料只有几种。 附录中列出了几种常用的标准热电偶分度表。根据标准规定,热电偶的分度表是以t00为基准进行分度的。当t0时,所有型号热电偶产生的热电势为0mV;当tt0,热电偶输出的热电势减小,但电桥中RCu随温度的上升而增大,于是电桥两端会产生一个不平衡电压Uab(t0 )此时回路中输出的热电势为:经过设计,可使电桥的不平衡电压等于因冷端温度变化引起的热电势变化,即于是实现了冷端温度的自动补偿。实际的补偿电桥一般是按t020设计的,即t020时,补偿电桥
29、平衡无电压输出。 热电偶的结构形式热电偶广泛应用于各种条件下的温度测量,尤其适用于500以上较高温度的测量,普通型热电偶和铠装型热电偶是实际应用最广泛的两种结构。 接线盒保护套管绝缘管热电偶安装法兰引线口普通型热电偶普通型热电偶主要由热电极、绝缘管、保护套管和接线盒等主要部分组成。贵重金属热电极的直径一般为0.30.65mm,普通金属热电极的直径一般为0.53.2mm;热电极的长度由安装条件和插入深入而定,一般为3502000mm。绝缘管用于防止两根电极短路保护套管用于保护热电极不受化学腐蚀和机械损伤材料的选择因工作条件而定普通型热电偶主要有法兰式和螺纹式两种安装方式铠装型热电偶热电极 绝缘材
30、料 金属套管热电极绝缘材料铠装型热电偶断面结构铠装型热电偶是由热电极、绝缘材料和金属套管三者经过拉伸加工成型的金属套管一般为铜、不锈钢、镍基高温合金等保护套管和热电极之间填充绝缘材料粉末,常用的绝缘材料有氧化镁、氧化铝等。铠装型热电偶可以做得很细,一般为28mm,在使用中可以随测量需要任意弯曲。铠装热电偶具有动态响应快、机械强度高、抗震性好、可弯曲等优点,可安装在结构较复杂的装置上,应用十分广泛。 3 热电阻及其测温原理热电阻的测温原理工业上常用的金属热电阻 热电阻的信号连接方式 热电阻的结构型式热电阻的测温原理在工业应用中,热电偶一般适用于测量500以上的较高温度。对于500以下的中、低温度
31、,热电偶输出的热电势很小,这对二次仪表的放大器、抗干扰措施等的要求就很高,否则难以实现精确测量;而且,在较低的温度区域,冷端温度的变化所引起的相对误差也非常突出。所以测量中、低温度,一般使用热电阻温度测量仪表较为合适。热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化而变化的特性。因此,只要测出感温热电阻的阻值变化,就可以测量出被测温度。目前,主要有金属热电阻和半导体热敏电阻两类。 金属热电阻:金属热电阻的电阻值和温度一般可以用以下的近似关系式表示: 式中, 为温度t时对应的电阻值 为温度t0(通常t00)时对应的电阻值 为温度系数。 半导体热敏电阻:半导体热敏电阻的阻值和温度
32、的关系为: 式中, 为温度t时对应的电阻值 A、B是取决于半导体材料和结构的常数 金属热电阻和半导体热敏电阻的比较:热敏电阻的温度系数更大,常温下的电阻值更高(通常在数千欧以上),但互换性较差,非线性严重,测温范围只有50300左右,大量用于家电和汽车用温度检测和控制。金属热电阻一般适用于测量200500范围内的温度测量,其特点测量准确、稳定性好、性能可靠,在过程控制领域中的应用极其广泛。 工业上常用的金属热电阻 从电阻随温度的变化来看,大部分金属导体都有这种性质,但并不是都能用作测温热电阻,作为热电阻的金属材料一般要求: 尽可能大而且稳定的温度系数、电阻率要大、在使用的温度范围内具有稳定的化
33、学和物理性能、材料的复制性好、电阻值随温度变化要有单值函数关系(最好呈线性关系)。 我国最常用的铂热电阻有R010、R0100和R01000等几种, 它们的分度号分别为Pt10、 Pt100 和 Pt1000;铜热电阻有R050和R0100两种,分度号分别为Cu50和 Cu100其中 Pt100 和 Cu50 的应用更为广泛 热电阻的信号连接方式 热电阻是把温度变化转换为电阻值变化的一次元件,通常需要把电阻信号通过引线传递到计算机控制装置或者其它二次仪表上。常用的引线方式有三种:ER1R2R3二线制:在热电阻的两端各连接一根导线来引出电阻信号。这种引线方式最简单但由于连接导线必然存在引线电阻r
34、,r的大小与导线的材质和长度等因素有关很明显,图中的因此,这种引线方式只适用于测量精度要求较低的场合。 ER1R2R3三线制:在热电阻根部的一端连接一根引线,另一端连接两根引线的方式称为三线制 这种方式通常与电桥配套使用,可以较好地消除引线电阻的影响,是工业过程中最常用的引线方式。 IIABC事实上电桥上R1R2Rt、R3,经过设计可以使两个桥臂上的电流相等,均为I,且I几乎不受Rt的影响三线制的连接,每根线上同样也存在导线电阻r此时,UiUAC?可以起到调零的作用四线制:在热电阻根部两端各连接两根导线的方式称为四线制,其中两根引线为热电阻提供恒定电流Is,把Rt转换为电压信号Ui,再通过另两
35、根引线把Ui引至二次仪表。可见这种引线方式可以完全消除引线电阻的影响,主要用于高精度的温度检测。 4 温度变送器简介 DDZ-III型温度变送器 一体化温度变送器智能式温度变送器 DDZIII型温度变送器 分为热电偶温度变送器和热电阻温度变送器两种热电偶温度变送器:把mV信号转换为标准电流输出热电阻温度变送器:把信号转换为标准电流输出最终要求:变送器输出电流Io应与被测温度t成线性对应关系热电偶温度变送器应主要要解决:冷端温度补偿和线性化处理两个内容热电偶温度变送器输入热电势毫伏信号,输入回路即是冷端温度自动补偿桥路,其产生的补偿电势与热电势相加后作为测量电势,因此补偿电桥上的参数与热电偶分度
36、号有关,热电偶温度变送器使用时要注意分度号的匹配。线性化处理电路热电阻温度变送器应主要要解决:克服引线电阻的影响和线性化处理两个内容采用三线制输入方式。线性化处理电路 DDZ型温度变送器是工业过程中使用比较广泛的一类模拟式温度变送器,它与各类型的热电偶、热电阻配套使用,将温度或温差信号转换为4mA20mA 或DC1V5V 的同一标准信号输出。 DDZ型温度变送器主要有热电偶温度变送器、热电阻温度变送器和直流毫伏变送器3 种类型。3 种变送器在线路结构上都由量程单元和放大单元两部分组,其中放大单元是通用的,而量程单元则随品种和测量范围的不同而不同。 DDZ型温度变送器的原理框图如图所示 DDZ型
37、温度变送器的原理框图1) 热电偶温度变送器的量程单元 热电偶温度变送器的量程单元的电路与直流毫伏变送器的量程单元基本相同,只是增加了冷端温度补偿电路和线性化电路。其电路图如图所示。电桥电路的i3 R 桥臂串接一只铜电阻Cu R , Cu R 放在热电偶的冷端附近,感受与热电偶冷端相同的温度。如果以20为标准,补偿电路补偿的条件为当现场温度变化时,热电偶电动势的变化量为2) 温度变送器的放大单元 温度变送器的放大单元由集成运放、功率放大、隔离输出、直流交流直流变换器和电源等部分组成。其作用是将量程单元的输出电压经电压放大和功率放大,最后转换为4mA20mA 的统一标准信号输出 一体化温度变送器
38、分为一体化热电偶温度变送器和一体化热电阻温度变送器两种热电偶温度变送器:把mV信号转换为标准电流输出热电阻温度变送器:把信号转换为标准电流输出所谓一体化温度变送器,是指将变送器模块安装在测温元件接线盒或专用接线盒内,变送器模块和测温元件形成一个整体,可直接安装在被测设备上,输出为统一标准信号420mA。这种变送器具有体积小、重量轻、现场安装方便等优点,因而在工业生产中得到广泛应用。 由于一体化温度变送器直接安装在现场,但由于变送器模块内部的集成电路一般情况下工作温度在20+80范围内,超过这一范围,电子器件的性能会发生变化,变送器将不能正常工作,因此在使用中应特别注意变送器模块所处的环境温度。
39、 一体化温度变送器品种较多,其变送器模块大多数以一片专用变送器芯片为主,外接少量元器件构成,常用的变送器芯片有AD693、XTR101、XTR103、IXR100等。下面以AD693构成的一体化温度变送器为例进行介绍。 一体化热电偶温度变送器I1I2VT1一体化热电偶温度变送器简图AD693的输入信号Ui为热电偶所产生的热电势Et与电桥的输出信号UBD之代数和 如果设AD693的转换系数为K,可得变送器输出与输入之间的关系为 结论:变送器的输出电流I0与热电偶的热电势Et成正比关系。RCu阻值随温度而变,合理选择RCu的数值可使RCu随温度变化而引起的I1RCu变化量近似等于热电偶因冷端温度变
40、化所引起的热电势Et的变化值,两者互相抵消。W1的作用是调零,W2的作用是调满(量程)一体化热电阻温度变送器I2I1VT1AD693构成的热电阻温度变送器采用三线制接法,与热电偶温度变送器的电路大致相仿,只是原来热电偶冷端温度补偿电阻RCu现用热电阻Rt代替。AD693的输入信号Ui为电桥的输出信号UBD,即 同样可求得热电阻温度变送器的输出与输入之间的关系为 智能式温度变送器 智能式温度变送器有采用HART协议通信方式,也有采用现场总线通信方式。下面以SMART公司的TT302温度变送器为例进行介绍。TT302温度变送器是一种符合FF通信协议的现场总线智能仪表,它可以与各种热电阻或热电偶配合
41、使用测量温度,具有量程范围宽、精度高、环境温度和振动影响小、抗干扰能力强、重量轻以及安装维护方便等优点。 输入板包括多路转换器、信号调理电路、AD转换器和隔离部分,其作用是将输入信号转换为二进制的数字信号,传送给CPU,并实现输入板与主电路板的隔离。 用于热电偶的冷端温度补偿 核心采样、计算(控制)、输出 产生并输出满足FF标准的数字信号 显示 5 双金属温度计 6 温度检测仪表的选用 工业上常见的温度检测仪表主要有:双金属温度计热电偶热电阻辐射式温度计等就地指示精度不高在线检测适用于测量5001800范围的中高温度适用于测量500以下的中低温度一般用于2000以上的高温测量选项使用热电阻、热
42、电偶时还应该根据相应的要求确定合适的分度号。温度检测仪表的安装 一般来说,温度检测仪表的安装需要遵循以下原则: 检测元件的安装应确保测量的准确性,选择有代表性的安装位置。 检测元件应该有足够的插入深度不应该把检测元件插入介质的死角,以确保能进行充分的热交换;测量管道中的介质温度时,检测元件工作端应位于管道中心流速最大之处检测元件应该迎着流体流动方向安装,非不得已时,切勿与被测介质顺流安装,否则容易产生测量误差;测量负压管道(或设备)上的温度时,必须保证有密封性,以免外界空气的吸入而降低精度。 (a)逆流 (b)正交 (d)弯头图3-56 温度检测元件的安装示意图检测元件的安装应确保安全、可靠。
43、 为避免检测元件的损坏,接触式测量仪表的保护套管应该具有足够的机械强度在使用时可以根据现场的工作压力、温度、腐蚀性等特性,合理地选择保护套管的材质、壁厚当介质压力超过10Mpa时,必须安装保护外套,确保安全为了减小测量的滞后,可在保护套管内部加装传热良好的填充物,如硅油、石英砂等等接线盒出线孔应该朝下,以免因密封不良使水汽、灰尘等进入而降低测量精度。 检测元件的安装应综合考虑仪表维修、校验的方便。 按照规定的型号配用热电偶的补偿导线,注意热电偶的正、负极与补偿导线的正、负极相连接。热电阻的线路电阻一定要符合所配二次仪表的要求。为了保护连接导线与补偿导线不受外来机械损伤,连接导线或补偿导线应穿入
44、钢管内或走汇线槽。导线应尽量避免有接头。应有良好的绝缘。禁止与交流输电线合用一根穿线管,以免引起感应。补偿导线不应有中间接头,否则应加装接线盒。另外,最好与其他导线分开敷设。 布线要求 三、 流量测量流量检测的主要方法和分类 节流式流量计 转子流量计 电磁流量计 涡轮流量计 漩涡流量计 容积式流量计 其它流量检测方法 超声波式流量检测 质量流量检测方法 几个概念 流量通常是指单位时间内流经管道某截面的流体的数量,也就是所谓的瞬时流量;在某一段时间内流过流体的总和,称为总量或累积流量。 体积流量以体积表示的瞬时流量用 qv 表示,单位为 m3/s 以体积表示的累积流量用 Qv 表示,单位为 m3
45、质量流量以质量表示的瞬时流量用 qm 表示,单位为 kg/s以质量表示的累积流量用 Qm 表示,单位为 kg 标态下的体积流量由于气体是可压缩的,流体的体积会受工况的影响,为了便于比较,工程上通常把工作状态下测得的体积流量换算成标准状态(温度为20,压力为一个标准大气压)下的体积流量。标准状态下的体积流量用qvn表示,单位为Nm3/s。 流量检测的主要方法和分类 流量检测方法有很多,就测量原理而言,可以分为直接测量法和间接测量法两类。直接测量法可以直接测量出管道中的体积流量或质量流量间接测量法则是通过测量出流体的(平均)流速,结合管道的截面积、流体的密度及工作状态等参数计算得出。 除了椭圆齿轮
46、流量计直接测量体积流量、科里奥利力质量流量计之外,其它均基于间接法来流量测量1.3.1 节流式流量计 节流式流量计也称为差压式流量计,它是目前工业生产过程中流量测量最成熟、最常用的方法之一。如果在管道中安置一个固定的阻力件,它的中间开一个比管道截面小的孔,当流体流过该阻力件时,由于流体流束的收缩而使流速加快、静压力降低,其结果是在阻力件前后产生一个较大的压差。压差的大小与流体流速的大小有关,流速愈大,差压也愈大,因此只要测出差压就可以推算出流速,进而可以计算出流体的流量。 (a) 标准孔板(b) 喷嘴(c) 文丘里管把流体流过阻力件使流束收缩造成压力变化的过程称节流过程,其中的阻力件称为节流件
47、。作为流量检测用的节流件有标准的和特殊的两种。标准节流件包括标准孔板、标准喷嘴和标准文丘里管。对于标准化的节流件,在设计计算时都有统一标准的规定、要求和计算所需的有关数据及程序,可直接按照标准制造;安装和使用时不必进行标定。特殊节流件主要用于特殊介质或特殊工况条件的流量检测,它必须用实验方法单独标定。 相比而言,标准孔板制作最简单,使用也最广泛,一下只介绍标准孔板, 123节流原理 流动流体的能量有两种形式:静压能和动能。流体由于有压力而具有静压能,又由于有流动速度而具有动能,这两种形式的能量在一定条件下是可以相互转化的。 流速静压流量方程 123流速静压根据流体力学中的伯努利方程,可以推导得
48、出节流式流量计的流量方程,也就是差压和流量之间的定量关系式: 为流量系数 为可膨胀性系数A0为节流件的开孔面积 为节流装置前的流体密度P节流装置前后实际测得的压差 主要与节流装置的型式、取压方式、流体的流动状态(如雷诺数)和管道条件等因素有关。因此,是一个影响因素复杂的综合性参数,也是节流式流量计能否准确测量流量的关键所在,雷诺数大于某一数值(界限雷诺数)时,值可认为是一常数。对于标准节流装置,可以从有关手册中查出;对于非标准节流装置,其值要由实验方法确定。可膨胀性系数用来校正流体的可压缩性,它与节流件前后压力的相对变化量、流体的等熵指数等因素有关,其取值范围小于等于1。对于不可压缩性流体,1
49、;对于可压缩性流体,则1。应用时可以查阅有关手册而得标准节流件(孔板) 节流装置包括节流件、取压装置和符合要求的前后直管段标准节流装置是指节流件、取压装置都标准化,前后直管段符合规定要求,可以直接投入使用 标准孔板,要求: d/D 应在0.20.75之间 d不小于12.5mm 直孔厚度h应在0.005D到0.02D之间 孔板的总厚度H应在h和0.05D之间 圆锥面的斜角应在3045之间 标准喷嘴和标准文丘里管的结构参数的规定也可以查阅相关的设计手册。 有手册可查,不要求记标准取压方式 国家规定标准的取压方式有角接取压、法兰取压和DD/2取压。 角接取压环隙取压单独钻孔取压夹持环流体角接取压的两
50、个取压口分别位于孔板上下端面与管壁的夹角处取压口可以是环隙取压口和单独钻孔取压口环隙取压利用左右对称的两个环室把孔板夹在中间,通常要求环隙在整个圆周上穿通管道,或者每个夹持环应至少有四个开孔与管道内部连通,每个开孔的中心线彼此互成等角度,再利用导压管把孔板上下游的压力分别引出当采用单独钻孔取压时,取压口的轴线应尽可能以90与管道轴线相交环隙宽度和单独钻孔取压口的直径 a 通常在410mm之间 显然,环隙取压由于环室的均压作用,便于测出孔板两端的平稳差压,能得到较好的测量精度,但是夹持环的加工制造和安装要求严格。当管径D500mm时,一般采用单独钻孔取压。 法兰取压和DD/2取压 法兰取压装置是
51、由一对带有取压口的法兰组成取压口轴线距离孔板上、下端面均为25.4mm(1英寸)l1l2法兰取压DD/2取压装置是设有取压口的管段,上、下游取压口轴线与孔板上游端面的距离分为D和D/2(D为管道的直径) l1(D)l2(D/2)DD/2取压节流式流量计的安装 原理总结:节流装置引压管差压变送器显示仪表/控制器在各种标准的节流装置中以标准孔板的应用最为广泛,它具有结构简单、安装使用方便的特点,适用于大流量的测量。孔板的最大缺点是流体流经节流件后压力损失较大,当工艺管路不允许有较大的压力损失时,一般不宜选用孔板流量计。标准喷嘴和标准文丘里管的压力损失较小,但结构比较复杂,不易加工。虽然节流式流量计
52、的应用非常广泛,但是如果使用不当往往会出现很大的测量误差,有时甚至高达1020。下面列举一些造成测量误差的原因,以便在安装使用过程中得到充分的注意,并予以适当的解决。 差压变送器的安装如前所述 流体在管道中正常流动(v、p)节流件使流体收束,流速增大,压力降低节流件前后出现“压差”“压差”与流量有关再采用差压变送器,将差压信号转换为统一的标准信号,便于显示及控制 节流式流量计的使用特点和要求标准孔板应用广泛,它具有结构简单、安装方便的特点,适用于大流量的测量。孔板测量的压损大,当不允许有较大的管道压损时,便不宜采用。在一般场合下,仍采用孔板为多。标准喷嘴和标准文丘里管的压力损失较孔板为小,但结
53、构比较复杂,不易加工。标准节流装置仅适用于测量管道直径大于50mm,雷诺数在104105以上的流体;流体应当清洁,充满全部管道,不发生相变;为保证流体在节流装置前后为稳定的流动状态,在节流装置的上、下游必须配置一定长度的直管段(与管径、节流件的开孔面积以及管路上的弯头数都有关系)节流装置经过长时间的使用,会因物理磨损或者化学腐蚀,造成几何形状和尺寸的变化,从而引起测量误差,因此需要及时检查和维修,必要时更换新的节流装置 节流式流量计误差产生的原因实际工况与设计要求不符,如:温度、压力、湿度以及相应的流体重度、粘度、雷诺数等参数数值发生变化,则会造成较大的误差。为了消除这种误差,必须按新工艺重新
54、设计计算,或加以必要的修正。节流装置安装不正确节流装置安装不正确,在安装时,特别要注意节流装置的安装方向。在使用中,要保持节流装置的清洁。如在节流装置处防止有沉淀、结焦、堵塞等现象。节流装置的磨损,应注意日常检查、维修,必要时应换用新的孔板。导压管安装不正确,或有诸塞、渗漏现象,节流式流量计误差产生的原因孔板本身原因:直角边缘不锐利 测量值偏小 d太大 测量值偏小 正取压孔离端面太远 测量值偏小 h太大 测量值偏大 负取压孔离端面太远 测量值偏小 测量值偏大 安装不好,孔板弯曲 可大可小 1.3.2 转子流量计 在工业生产中经常遇到小流量的测量,因其流体的流速低,这就要求测量仪表有较高的灵敏度
55、,才能保证一定的精度。转子流量计特别适宜于测量管径50mm以下管道的流量,测量的流量可小到每小时几升。 h孔板流量计:节流面积不变流量变化压差发生变化转子流量计:压差不变流量变化节流面积发生变化转子流量计主要由两个部分组成: 一是由下往上逐渐扩大的锥形管(通常用透明玻璃制成) 二是放在锥形管内可自由运动的转子。被测流体由锥形管下端进入,流经转子与锥形管之间的环隙,再从上端流出。当流体流过的时候,位于锥形管中的转子受到向上的一个力,使其浮起。当这个力正好等于转子重量减去流体对转子的浮力,此时转子就停浮在一定的高度上。若流体流量突然由小变大时,作用在转子上的向上的力就加大,转子上升,环隙增大,即流
56、通面积增大。随着环隙的增大,使流体流速变慢,流体作用在转子上的向上力也就变小。这样,转子在一个新的高度上重新平衡。这样,转子在锥形管中平衡位置的高低h与被测介质的流量大小相对应。 流量方程转子的平衡关系:V为转子的体积;t和f分别为转子和流体的密度;g为重力加速度;P为转子前后的压差;A为转子的最大截面积 转子和锥形管间的环隙面积相当于节流式流量计的节流孔面积,但它是变化的,并与转子高度h成近似的线性关系,因此,转子流量计的流量公式可以表示为: 式中:为仪表常数;h为转子浮起的高度。 流量与转子高度h成线性关系式中的其它参数为常数转子流量计的锥形管一般采用透明材料制成,在锥形管上刻有流量读数,
57、用户只要根据转子高度来读取读数。转子流量计一般只适用于就地指示。对配有电远传装置的转子流量计,也可以把反应流量大小的转子高度h转换为电信号,传送到其它仪表进行显示、记录或控制。 流量修正由于转子流量计在生产的时候,是在工业基准状态(20,0.10133Mpa)下用水或空气进行刻度的。如果工作状态不同,必须对流量指示值按照实际被测介质的密度、温度、压力等参数的具体情况进行修正。 液体流量测量时的修正 如果某转子流量计的转子高度为h,如果介质为20的水,则流量qv0与h的关系满足:式中:qv0为用水标定时的流量刻度 w为水的密度 如果介质不是20的水,则流量qvf与h的关系满足:qvf和f分别为被
58、测介质的实际流量和密度 如果被测介质的粘度和水的粘度相差不大,可以近似认为是常数,则有 刻度流量实际流量修正系数例现有一只以水标定的转子流量计用来测量苯的流量,已知转子的材料为不锈钢(密度7.9g/cm3),苯的密度为0.83g/cm3 ,请问流量计读数为3.6L/s时,苯的实际流量是多少?解:修正公式因此质量流量的修正公式气体流量测量时的修正 假设实际被测气体的密度为f,因此被测流体流量Qf与指示值Q0的关系是: 通常,气体流量需要把它转化成工业基准状态(T020293K,P01.0133105Pa) 记被测时的压力和温度分别为:Pf、Tf,所以被测流体对应标准状态的体积流量为: 此时的密度
59、f还是实际密度,由于测量的困难,也需要把它转化成标态下的密度更为方便: 于是有修正公式 温度单位是绝对温标,压力为绝对压力。(P0=1.0133*105Pa,T0=273K)0 空气标准状态密度(1.293kg/m3)f0 被测介质标准状态密度 Q0 显示流量 Qf0 实际流量(标准状态) 转子流量计的特点 转子流量计主要适合于检测中小管径、较低雷诺数的中小流量; 流量计结构简单,使用方便,工作可靠,仪表前直管段长度要求不高; 流量计的基本误差约为仪表量程的土2,量程比可达10:1 流量计的测量精度易受被测介质密度、粘度、温度、压力、纯净度、安装质量等的影响。1.3.3 电磁流量计 基本工作原
60、理 导体切割磁力线,会产生电动势 适用场合 可以检测具有一定电导率的酸、碱、盐溶液,腐蚀性液体以及含有固体颗粒的的液体测量,但不能检测气体、蒸汽和非导电液体的流量。 流量公式 当导电的流体在磁场中以垂直方向流动而切割磁力线时,就会在管道两边的电极上产生感应电势,感应电势的大小与磁场的强度、流体的速度和流体垂直切割磁力线的有效长度成正比: 式中:Ex为感应电势;K为比例系数;B为磁场强度;D为管道直径;v为垂直于磁力线的流体流动速度。 在管道直径D已经确定,磁场强度B维持不变时,流体的体积流量与磁感应电势成线性关系。利用上述原理制成的流量检测仪表称为电磁流量计。 电磁流量计的特点测量导管内无可动
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 留美中介合同范本
- 楼面补漏施工合同范本
- 结婚前协议合同范本
- 2025至2030年中国手用磨边机市场分析及竞争策略研究报告
- 2025至2030年中国手工藤制品行业发展研究报告
- 2025至2030年中国广告电子钟行业投资前景及策略咨询报告
- 2025至2030年中国平板手工灯罩市场调查研究报告
- 2025至2030年中国工业用护发素市场调查研究报告
- 公司买卖机械合同样本
- 阿拉伯语故事行业跨境出海战略研究报告
- 人教五四 六年级 下册 语文 第五单元《中国有能力解决好吃饭问题 第二课时》课件
- 2025年湖北省八市高三(3月)联考物理试卷(含答案详解)
- 综合应急预案、专项应急预案、现场处置方案
- 放射医学检查技术及操作规范
- 《南非综合简要介绍》课件
- 新苏教版一年级数学下册第四单元《认识20~99》全部教案(共3课时)
- 2025年中国高压注射器行业发展策略、市场环境及前景研究分析报告
- 宁德时代供应商申请入库教程
- 手术患者转运交接课件
- Unit+6+The+power+of+plants+大单元教学设计2024-2025学年外研版英语七年级上册+
- 四川大学华西口腔医学院课件
评论
0/150
提交评论