版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年高考数学模拟测试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1复数满足为虚数单位),则的虚部为( )ABCD2如图是甲、乙两位同学在六次数学小测试(满分100分)中得分情况的茎叶图,则下列说法错误的是( )A甲得分的平均数比乙大B甲得分的极差比乙大C
2、甲得分的方差比乙小D甲得分的中位数和乙相等3已知平面向量,满足,且,则与的夹角为( )ABCD4已知双曲线的左,右焦点分别为、,过的直线l交双曲线的右支于点P,以双曲线的实轴为直径的圆与直线l相切,切点为H,若,则双曲线C的离心率为( )ABCD5如图,在正方体中,已知、分别是线段上的点,且.则下列直线与平面平行的是( )ABCD6已知函数,集合,则( )ABCD7如图是一个几何体的三视图,则该几何体的体积为()ABCD8连接双曲线及的4个顶点的四边形面积为,连接4个焦点的四边形的面积为,则当取得最大值时,双曲线的离心率为( )ABCD9已知为抛物线的准线,抛物线上的点到的距离为,点的坐标为,
3、则的最小值是( )AB4C2D10已知定义在上的奇函数满足,且当时,则( )A1B-1C2D-211双曲线:(,)的一个焦点为(),且双曲线的两条渐近线与圆:均相切,则双曲线的渐近线方程为( )ABCD12已知集合AxN|x28x,B2,3,6,C2,3,7,则( )A2,3,4,5B2,3,4,5,6C1,2,3,4,5,6D1,3,4,5,6,7二、填空题:本题共4小题,每小题5分,共20分。13已知为等比数列,是它的前项和.若,且与的等差中项为,则_.14已知半径为4的球面上有两点A,B,AB=42,球心为O,若球面上的动点C满足二面角C-AB-O的大小为6015已知等边三角形的边长为1
4、,点、分别为线段、上的动点,则取值的集合为_16已知(且)有最小值,且最小值不小于1,则的取值范围为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)选修4-4:坐标系与参数方程已知曲线的参数方程是(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是.(1)写出的极坐标方程和的直角坐标方程;(2)已知点、的极坐标分别为和,直线与曲线相交于,两点,射线与曲线相交于点,射线与曲线相交于点,求的值.18(12分)已知.() 若,求不等式的解集;(),求实数的取值范围.19(12分)已知椭圆:(),点是的左顶点,点为上一点,离心率.(1)求椭圆的
5、方程;(2)设过点的直线与的另一个交点为(异于点),是否存在直线,使得以为直径的圆经过点,若存在,求出直线的方程;若不存在,说明理由.20(12分)在直角坐标系中,已知曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴建立极坐标系,射线的极坐标方程为,射线的极坐标方程为.()写出曲线的极坐标方程,并指出是何种曲线;()若射线与曲线交于两点,射线与曲线交于两点,求面积的取值范围.21(12分)在平面直角坐标系中,以为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为;直线的参数方程为 (为参数),直线与曲线分别交于两点(1)写出曲线的直角坐标方程和直线的普通方程;(2)若点的极坐
6、标为,求的值22(10分)已知函数,直线为曲线的切线(为自然对数的底数)(1)求实数的值;(2)用表示中的最小值,设函数,若函数为增函数,求实数的取值范围2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】,分子分母同乘以分母的共轭复数即可.【题目详解】由已知,故的虚部为.故选:C.【答案点睛】本题考查复数的除法运算,考查学生的基本运算能力,是一道基础题.2、B【答案解析】由平均数、方差公式和极差、中位数概念,可得所求结论【题目详解】对于甲,;对于乙,故正确;甲的极差为,乙的极差为,
7、故错误;对于甲,方差.5,对于乙,方差,故正确;甲得分的中位数为,乙得分的中位数为,故正确故选:【答案点睛】本题考查茎叶图的应用,考查平均数和方差等概念,培养计算能力,意在考查学生对这些知识的理解掌握水平,属于基础题3、C【答案解析】根据, 两边平方,化简得,再利用数量积定义得到求解.【题目详解】因为平面向量,满足,且, 所以,所以,所以 ,所以,所以与的夹角为.故选:C【答案点睛】本题主要考查平面向量的模,向量的夹角和数量积运算,属于基础题.4、A【答案解析】在中,由余弦定理,得到,再利用即可建立的方程.【题目详解】由已知,在中,由余弦定理,得,又,所以,故选:A.【答案点睛】本题考查双曲线
8、离心率的计算问题,处理双曲线离心率问题的关键是建立三者间的关系,本题是一道中档题.5、B【答案解析】连接,使交于点,连接、,可证四边形为平行四边形,可得,利用线面平行的判定定理即可得解【题目详解】如图,连接,使交于点,连接、,则为的中点,在正方体中,且,则四边形为平行四边形,且,、分别为、的中点,且,所以,四边形为平行四边形,则,平面,平面,因此,平面.故选:B.【答案点睛】本题主要考查了线面平行的判定,考查了推理论证能力和空间想象能力,属于中档题6、C【答案解析】分别求解不等式得到集合,再利用集合的交集定义求解即可.【题目详解】,,故选C【答案点睛】本题主要考查了集合的基本运算,难度容易.7
9、、A【答案解析】根据三视图可得几何体为直三棱柱,根据三视图中的数据直接利用公式可求体积.【题目详解】由三视图可知几何体为直三棱柱,直观图如图所示:其中,底面为直角三角形,高为.该几何体的体积为故选:A.【答案点睛】本题考查三视图及棱柱的体积,属于基础题.8、D【答案解析】先求出四个顶点、四个焦点的坐标,四个顶点构成一个菱形,求出菱形的面积,四个焦点构成正方形,求出其面积,利用重要不等式求得取得最大值时有,从而求得其离心率.【题目详解】双曲线与互为共轭双曲线,四个顶点的坐标为,四个焦点的坐标为,四个顶点形成的四边形的面积,四个焦点连线形成的四边形的面积,所以,当取得最大值时有,离心率,故选:D.
10、【答案点睛】该题考查的是有关双曲线的离心率的问题,涉及到的知识点有共轭双曲线的顶点,焦点,菱形面积公式,重要不等式求最值,等轴双曲线的离心率,属于简单题目.9、B【答案解析】设抛物线焦点为,由题意利用抛物线的定义可得,当共线时,取得最小值,由此求得答案.【题目详解】解:抛物线焦点,准线,过作交于点,连接由抛物线定义,当且仅当三点共线时,取“”号,的最小值为.故选:B.【答案点睛】本题主要考查抛物线的定义、标准方程,以及简单性质的应用,体现了数形结合的数学思想,属于中档题.10、B【答案解析】根据f(x)是R上的奇函数,并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的
11、周期为4,而由x0,1时,f(x)=2x-m及f(x)是奇函数,即可得出f(0)=1-m=0,从而求得m=1,这样便可得出f(2019)=f(-1)=-f(1)=-1【题目详解】是定义在R上的奇函数,且;的周期为4;时,;由奇函数性质可得;时,;.故选:B.【答案点睛】本题考查利用函数的奇偶性和周期性求值,此类问题一般根据条件先推导出周期,利用函数的周期变换来求解,考查理解能力和计算能力,属于中等题.11、A【答案解析】根据题意得到,化简得到,得到答案.【题目详解】根据题意知:焦点到渐近线的距离为,故,故渐近线为.故选:.【答案点睛】本题考查了直线和圆的位置关系,双曲线的渐近线,意在考查学生的
12、计算能力和转化能力.12、C【答案解析】根据集合的并集、补集的概念,可得结果.【题目详解】集合AxN|x28xxN|0 x8,所以集合A1,2,3,4,5,6,7B2,3,6,C2,3,7,故1,4,5,6,所以1,2,3,4,5,6.故选:C.【答案点睛】本题考查的是集合并集,补集的概念,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】设等比数列的公比为,根据题意求出和的值,进而可求得和的值,利用等比数列求和公式可求得的值.【题目详解】由等比数列的性质可得,由于与的等差中项为,则,则,因此,.故答案为:.【答案点睛】本题考查等比数列求和,解答的关键就是等比数列的公
13、比,考查计算能力,属于基础题.14、4【答案解析】设ABC所在截面圆的圆心为O1,AB中点为D,连接OD,易知ODO1即为二面角C-AB-O的平面角,可求出OD,O1D及OO1,然后可判断出四面体OABC外接球的球心E在直线OO1上,在【题目详解】设ABC所在截面圆的圆心为O1,AB中点为D,连接OD,OAOB,所以,ODAB,同理O1DAB,所以,ODO1即为二面角ODO因为OA=OB=4,AB=42,所以OAB在RtODO1中,由cos60O1D因为O1到A、B、C三的距离相等,所以,四面体OABC外接球的球心E在直线OO设四面体OABC外接球半径为R,在RtO1由勾股定理可得:O1B2+
14、O【答案点睛】本题考查了三棱锥的外接球问题,考查了学生的空间想象能力、逻辑推理能力及计算求解能力,属于中档题15、【答案解析】根据题意建立平面直角坐标系,设三角形各点的坐标,依题意求出,的表达式,再进行数量积的运算,最后求和即可得出结果.【题目详解】解: 以的中点为坐标原点,所在直线为轴,线段的垂直平分线为轴建立平面直角坐标系,如图所示,则,则,设, ,即点的坐标为,则,所以故答案为: 【答案点睛】本题考查平面向量的坐标表示和线性运算,以及平面向量基本定理和数量积的运算,是中档题.16、【答案解析】真数有最小值,根据已知可得的范围,求出函数的最小值,建立关于的不等量关系,求解即可.【题目详解】
15、,且(且)有最小值,的取值范围为.故答案为:.【答案点睛】本题考查对数型复合函数的性质,熟练掌握基本初等函数的性质是解题关键,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)线的普通方程为,曲线的直角坐标方程为;(2).【答案解析】试题分析:(1)(1)利用cos2+sin2=1,即可曲线C1的参数方程化为普通方程,进而利用即可化为极坐标方程,同理可得曲线C2的直角坐标方程;(2)由过的圆心,得得,设,代入中即可得解.试题解析:(1)曲线的普通方程为,化成极坐标方程为曲线的直角坐标方程为(2)在直角坐标系下,恰好过的圆心,由得 ,是椭圆上的两点,在极坐标下
16、,设,分别代入中,有和 ,则,即18、();().【答案解析】()利用零点分段讨论法把函数改写成分段函数的形式,分三种情况分别解不等式,然后取并集即可;()利用绝对值三角不等式求出的最小值,利用均值不等式求出的最小值,结合题意,只需即可,解不等式即可求解.【题目详解】()当时, , ,或,或,或所以不等式的解集为; ()因为,又(当时等号成立),依题意,有,则,解之得,故实数的取值范围是.【答案点睛】本题考查由存在性问题求参数的范围、零点分段讨论法解绝对值不等式、利用绝对值三角不等式和均值不等式求最值;考查运算求解能力、分类讨论思想、逻辑推理能力;属于中档题.19、(1);(2)存在,【答案解
17、析】(1)把点代入椭圆C的方程,再结合离心率,可得a,b,c的关系,可得椭圆的方程;(2)设出直线的方程,代入椭圆,运用韦达定理可求得点的坐标,再由,可求得直线的方程,要注意检验直线是否和椭圆有两个交点【题目详解】(1)由题可得,所以椭圆的方程(2)由题知,设,直线的斜率存在设为,则与椭圆联立得,若以为直径的圆经过点,则,化简得,解得或因为与不重合,所以舍.所以直线的方程为.【答案点睛】本题考查椭圆的简单性质,考查直线与椭圆位置关系的应用,考查了向量的数量积的运用,属于中档题.20、(),曲线是以为圆心,为半径的圆;().【答案解析】()由曲线的参数方程能求出曲线的普通方程,由此能求出曲线的极
18、坐标方程()令,则,利用诱导公式及二倍角公式化简,再由余弦函数的性质求出面积的取值范围;【题目详解】解:()由(为参数)化为普通方程为,整理得曲线是以为圆心,为半径的圆.()令,面积的取值范围为【答案点睛】本题考查曲线的极坐标方程的求法,考查三角形的面积的求法,考查参数方程、直角坐标方程、极坐标方程的互化等基础知识,考查运算求解能力,属于中档题21、 (1) 曲线的直角坐标方程为即,直线的普通方程为;(2).【答案解析】(1)利用代入法消去参数方程中的参数,可得直线的普通方程,极坐标方程两边同乘以利用 即可得曲线的直角坐标方程;(2)直线的参数方程代入圆的直角坐标方程,根据直线参数方程的几何意义,利用韦达定理可得结果.【题目详解】(1)由,得,所以曲线的直角坐标方程为,即, 直线的普通方程为. (2)将直线的参数方程代入并化简、整理,得. 因为直线与曲线交于,两点所以,解得.由根与系数的关系,得,. 因为点的直角坐标为,在直线上.所以, 解得,此时满足.且,故.【答案点睛】参数方程主要通过
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《IGBT驱动板简介》课件
- 2024年乡镇政务工作计划结尾
- 安全教育培训计划安全教育培训总结报告
- 浙江省杭州市西湖区部分校2024-2025学年高一数学上学期期中联考试题含解析
- 湖南省邵阳市2024-2025学年高三语文上学期第五次月考试题含解析
- 甘肃省白银市会宁县2024-2025学年高二语文上学期期末质量检测试题含解析
- 艺术领域教学工作计划
- 医院感染管理委员会工作计划
- 老高考新教材适用2025版高考物理二轮复习热点情境练航天技术类一
- 第一学期小学四年级班主任工作计划范文
- 电子围栏管理制度
- 神经内分泌肿瘤教学演示课件
- 幼儿老师法律知识讲座
- 多发伤和复合伤的护理查房课件
- 宝宝肠道保健知识讲座
- 《中华人民共和国认证认可条例》培训测试题附答案
- 幼儿园公开课:中班语言《怎么才能不吃掉我的朋友》课件
- 《中国铁路的发展》课件
- 《高中化学新课程标准课件》
- 高中生物 选择性必修一 综合练习卷3 含详细答案解析
- 近代中国金融业的演变
评论
0/150
提交评论