重庆市重庆一中2023学年中考数学模拟精编试卷含答案解析_第1页
重庆市重庆一中2023学年中考数学模拟精编试卷含答案解析_第2页
重庆市重庆一中2023学年中考数学模拟精编试卷含答案解析_第3页
重庆市重庆一中2023学年中考数学模拟精编试卷含答案解析_第4页
重庆市重庆一中2023学年中考数学模拟精编试卷含答案解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、重庆市重庆一中2023学年中考数学模拟精编试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、测试卷卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k0)与反比例函数y2=(c是常数,且c0)的图象相交于A(3,2

2、),B(2,3)两点,则不等式y1y2的解集是()A3x2Bx3或x2C3x0或x2D0 x22若一个正比例函数的图象经过A(3,6),B(m,4)两点,则m的值为( )A2B8C2D83在平面直角坐标系中,将点P(2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P的坐标是( )A(2,4)B(1,5)C(1,-3)D(-5,5)4如图,矩形ABCD的顶点A、C分别在直线a、b上,且ab,1=60,则2的度数为( )A30B45C60D755我国的钓鱼岛面积约为4400000m2,用科学记数法表示为()A4.4106 B44105 C4106 D0.441076如图,在RtABC中,

3、ACB=90,BC=12,AC=5,分别以点A,B为圆心,大于线段AB长度的一半为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连接CD,则ACD的周长为()A13B17C18D257如图,O的直径AB的长为10,弦AC长为6,ACB的平分线交O于D,则CD长为( )A7BCD98实数的相反数是( )ABCD9抛物线的顶点坐标是( )A(2,3)B(-2,3)C(2,-3)D(-2,-3)10满足不等式组的整数解是()A2B1C0D1二、填空题(本大题共6个小题,每小题3分,共18分)11已知=32,则的余角是_12如图,已知ABCD,=_13如图,ABC中,点D、E分别在边A

4、B、BC上,DEAC,若DB=4,AB=6,BE=3,则EC的长是_14A,B两市相距200千米,甲车从A市到B市,乙车从B市到A市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地若设乙车的速度是x千米/小时,则根据题意,可列方程_15如图,在ABC中,C=90,AC=BC=2,将ABC绕点A顺时针方向旋转60到ABC的位置,连接CB,则CB= _16关于x的一元二次方程x22xm10有两个相等的实数根,则m的值为_三、解答题(共8题,共72分)17(8分)如图,AB为O的直径,点C在O上,ADCD于点D,且AC平分DAB,求证:(1)直线DC是O的切线;

5、(2)AC2=2ADAO18(8分)规定:不相交的两个函数图象在竖直方向上的最短距离为这两个函数的“亲近距离”(1)求抛物线yx22x+3与x轴的“亲近距离”;(2)在探究问题:求抛物线yx22x+3与直线yx1的“亲近距离”的过程中,有人提出:过抛物线的顶点向x轴作垂线与直线相交,则该问题的“亲近距离”一定是抛物线顶点与交点之间的距离,你同意他的看法吗?请说明理由(3)若抛物线yx22x+3与抛物线y+c的“亲近距离”为,求c的值19(8分)如图,在ABC中,AB=AC,BAC=120,EF为AB的垂直平分线,交BC于点F,交AB于点E求证:FC=2BF20(8分)某网店销售某款童装,每件售

6、价60元,每星期可卖300件,为了促销,该网店决定降价销售市场调查反映:每降价1元,每星期可多卖30件已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?21(8分)如图,在平面直角坐标系中有RtABC,A=90,AB=AC,A(2,0),B(0,1)(1)求点C的坐标;(2)将ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B、C正好落在某反比例函数图象上请求出这个反比例函数和此

7、时的直线BC的解析式(3)若把上一问中的反比例函数记为y1,点B,C所在的直线记为y2,请直接写出在第一象限内当y1y2时x的取值范围22(10分)如图,一次函数ykxb的图象与反比例函数ymx(1)求一次函数,反比例函数的表达式;(2)求证:点C为线段AP的中点;(3)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,说明理由并求出点D的坐标;如果不存在,说明理由23(12分)如图,AB是O的直径,BC交O于点D,E是弧的中点,AE与BC交于点F,C=2EAB求证:AC是O的切线;已知CD=4,CA=6,求AF的长24阅读下列材料,解答下列问题:材料1把一个多项式化成几个整式的

8、积的形式,这种变形叫做因式分解,也叫分解因式如果把整式的乘法看成一个变形过程,那么多项式的因式分解就是它的逆过程公式法(平方差公式、完全平方公式)是因式分解的一种基本方法如对于二次三项式a2+2ab+b2,可以逆用乘法公式将它分解成(a+b)2的形式,我们称a2+2ab+b2为完全平方式但是对于一般的二次三项式,就不能直接应用完全平方了,我们可以在二次三项式中先加上一项,使其配成完全平方式,再减去这项,使整个式子的值不变,于是有:x2+2ax3a2x2+2ax+a2a23a2(x+a)2(2a)2(x+3a)(xa)材料2因式分解:(x+y)2+2(x+y)+1解:将“x+y”看成一个整体,令

9、x+yA,则原式A2+2A+1(A+1)2再将“A”还原,得:原式(x+y+1)2上述解题用到的是“整体思想”,整体思想是数学解题中常见的一种思想方法,请你解答下列问题:(1)根据材料1,把c26c+8分解因式;(2)结合材料1和材料2完成下面小题:分解因式:(ab)2+2(ab)+1;分解因式:(m+n)(m+n4)+32023学年模拟测试卷参考答案(含详细解析)一、选择题(共10小题,每小题3分,共30分)1、C【答案解析】【分析】一次函数y1=kx+b落在与反比例函数y2=图象上方的部分对应的自变量的取值范围即为所求【题目详解】一次函数y1=kx+b(k、b是常数,且k0)与反比例函数y

10、2=(c是常数,且c0)的图象相交于A(3,2),B(2,3)两点,不等式y1y2的解集是3x0或x2,故选C【答案点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键2、A【答案解析】测试卷分析:设正比例函数解析式为:y=kx,将点A(3,6)代入可得:3k=6,解得:k=2,函数解析式为:y=2x,将B(m,4)代入可得:2m=4,解得m=2,故选A考点:一次函数图象上点的坐标特征3、B【答案解析】测试卷分析:由平移规律可得将点P(2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P的坐标是(1,5),故选B考点:点的平移4、C【答案解析】测试卷分析:过点D作D

11、Ea,四边形ABCD是矩形,BAD=ADC=90,3=901=9060=30,ab,DEab,4=3=30,2=5,2=9030=60故选C考点:1矩形;2平行线的性质.5、A【答案解析】4400000=4.41故选A点睛:科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数6、C【答案解析】在RtABC中,ACB=90,BC=12,AC=5,根据勾股定理求得AB=13.根据题意可知,EF为线段AB的垂直平分线,在RtABC中,根据直角三角形

12、斜边的中线等于斜边的一半可得CD=AD=AB,所以ACD的周长为AC+CD+AD=AC+AB=5+13=18.故选C.7、B【答案解析】作DFCA,交CA的延长线于点F,作DGCB于点G,连接DA,DB由CD平分ACB,根据角平分线的性质得出DF=DG,由HL证明AFDBGD,CDFCDG,得出CF=7,又CDF是等腰直角三角形,从而求出CD=【题目详解】解:作DFCA,垂足F在CA的延长线上,作DGCB于点G,连接DA,DBCD平分ACB,ACD=BCDDF=DG,弧AD=弧BD,DA=DBAFD=BGD=90,AFDBGD,AF=BG易证CDFCDG,CF=CGAC=6,BC=8,AF=1

13、,(也可以:设AF=BG=x,BC=8,AC=6,得8-x=6+x,解x=1)CF=7,CDF是等腰直角三角形,(这里由CFDG是正方形也可得)CD=故选B8、D【答案解析】根据相反数的定义求解即可【题目详解】的相反数是-,故选D【答案点睛】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数9、A【答案解析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标【题目详解】解:y=(x-2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3)故选A【答案点睛】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称

14、轴是x=h10、C【答案解析】先求出每个不等式的解集,再根据不等式的解集求出不等式组的解集即可【题目详解】 解不等式得:x0.5,解不等式得:x-1,不等式组的解集为-1x0.5,不等式组的整数解为0,故选C【答案点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集找出不等式组的解集是解此题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、58【答案解析】根据余角:如果两个角的和等于90(直角),就说这两个角互为余角即其中一个角是另一个角的余角可得答案【题目详解】解:的余角是:90-32=58故答案为58【答案点睛】本题考查余角,解题关键是掌握互为余角的两个角

15、的和为90度12、85【答案解析】如图,过F作EFAB,而ABCD,ABCDEF,ABF+BFE=180,EFC=C,=180ABF+C=180120+25=85故答案为85.13、【答案解析】由ABC中,点D、E分别在边AB、BC上,DEAC,根据平行线分线段成比例定理,可得DB:AB=BE:BC,又由DB=4,AB=6,BE=3,即可求得答案【题目详解】解:DEAC,DB:AB=BE:BC,DB=4,AB=6,BE=3,4:6=3:BC,解得:BC=,EC=BCBE=3=故答案为【答案点睛】考查了平行线分线段成比例定理,解题时注意:平行于三角形的一边,并且和其他两边(或两边的延长线)相交的

16、直线,所截得的三角形的三边与原三角形的三边对应成比例14、200 x【答案解析】直接利用甲车比乙车早半小时到达目的地得出等式即可【题目详解】解:设乙车的速度是x千米/小时,则根据题意,可列方程:200 x故答案为:200 x【答案点睛】此题主要考查了由实际问题抽象出分式方程,正确表示出两车所用时间是解题关键15、3【答案解析】如图,连接BB,ABC绕点A顺时针方向旋转60得到ABC,AB=AB,BAB=60,ABB是等边三角形,AB=BB,在ABC和BBC中,AB=BBAC=BCABCBBC(SSS),ABC=BBC,延长BC交AB于D,则BDAB,C=90,AC=BC=2,AB=(2BD=2

17、32=3CD=12BC=BDCD=31.故答案为:31.点睛: 本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC在等边三角形的高上是解题的关键,也是本题的难点 16、2.【答案解析】测试卷分析:已知方程x22x=0有两个相等的实数根,可得:44(m1)4m80,所以,m2.考点:一元二次方程根的判别式.三、解答题(共8题,共72分)17、(1)证明见解析.(2)证明见解析.【答案解析】分析:(1)连接OC,由OA=OC、AC平分DAB知OAC=OCA=DAC,据此知OCAD,根据ADDC即可得证;(2)连接BC,证D

18、ACCAB即可得详解:(1)如图,连接OC,OA=OC,OAC=OCA,AC平分DAB,OAC=DAC,DAC=OCA,OCAD,又ADCD,OCDC,DC是O的切线;(2)连接BC,AB为O的直径,AB=2AO,ACB=90,ADDC,ADC=ACB=90,又DAC=CAB,DACCAB,即AC2=ABAD,AB=2AO,AC2=2ADAO点睛:本题主要考查圆的切线,解题的关键是掌握切线的判定、圆周角定理及相似三角形的判定与性质18、(1)2;(2)不同意他的看法,理由详见解析;(3)c1【答案解析】(1)把y=x22x+3配成顶点式得到抛物线上的点到x轴的最短距离,然后根据题意解决问题;(

19、2)如图,P点为抛物线y=x22x+3任意一点,作PQy轴交直线y=x1于Q,设P(t,t22t+3),则Q(t,t1),则PQ=t22t+3(t1),然后利用二次函数的性质得到抛物线y=x22x+3与直线y=x1的“亲近距离”,然后对他的看法进行判断;(3)M点为抛物线y=x22x+3任意一点,作MNy轴交抛物线于N,设M(t,t22t+3),则N(t,t2+c),与(2)方法一样得到MN的最小值为c,从而得到抛物线y=x22x+3与抛物线的“亲近距离”,所以,然后解方程即可【题目详解】(1)y=x22x+3=(x1)2+2,抛物线上的点到x轴的最短距离为2,抛物线y=x22x+3与x轴的“

20、亲近距离”为:2;(2)不同意他的看法理由如下:如图,P点为抛物线y=x22x+3任意一点,作PQy轴交直线y=x1于Q,设P(t,t22t+3),则Q(t,t1),PQ=t22t+3(t1)=t23t+4=(t)2+,当t=时,PQ有最小值,最小值为,抛物线y=x22x+3与直线y=x1的“亲近距离”为,而过抛物线的顶点向x轴作垂线与直线相交,抛物线顶点与交点之间的距离为2,不同意他的看法;(3)M点为抛物线y=x22x+3任意一点,作MNy轴交抛物线于N,设M(t,t22t+3),则N(t,t2+c),MN=t22t+3(t2+c)=t22t+3c=(t)2+c,当t=时,MN有最小值,最

21、小值为c,抛物线y=x22x+3与抛物线的“亲近距离”为c,c=1【答案点睛】本题是二次函数的综合题,考查了二次函数图象上点的坐标特征和二次函数的性质,正确理解新定义是解题的关键19、见解析【答案解析】连接AF,结合条件可得到B=C=30,AFC=60,再利用含30直角三角形的性质可得到AF=BF=CF,可证得结论【题目详解】证明:连接AF,EF为AB的垂直平分线,AF=BF,又AB=AC,BAC=120,B=C=BAF=30,FAC=90,AF=FC,FC=2BF【答案点睛】本题主要考查垂直平分线的性质及等腰三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键20、(1)

22、y=30 x+1;(2)每件售价定为55元时,每星期的销售利润最大,最大利润2元;(3)该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件【答案解析】(1) 每星期的销售量等于原来的销售量加上因降价而多销售的销售量, 代入即可求解函数关系式;(2) 根据利润=销售量(销售单价-成本) , 建立二次函数, 用配方法求得最大值.(3) 根据题意可列不等式, 再取等将其转化为一元二次方程并求解, 根据每星期的销售利润所在抛物线开口向下求出满足条件的x的取值范围, 再根据 (1) 中一元一次方程求得满足条件的x的取值范围内y的最小值即可.【题目详解】(1)y300+30(60

23、 x)30 x+1(2)设每星期利润为W元,W(x40)(30 x+1)30(x55)2+2x55时,W最大值2每件售价定为55元时,每星期的销售利润最大,最大利润2元(3)由题意(x40)(30 x+1)6480,解得52x58,当x52时,销售300+308540,当x58时,销售300+302360,该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件【答案点睛】本题主要考查一次函数的应用和二次函数的应用,注意综合运用所学知识解题.21、(1)C(3,2);(2)y1=, y2=x+3; (3)3x1 【答案解析】分析:(1)过点C作CNx轴于点N,由已知条件证R

24、tCANRtAOB即可得到AN=BO=1,CN=AO=2,NO=NA+AO=3结合点C在第二象限即可得到点C的坐标;(2)设ABC向右平移了c个单位,则结合(1)可得点C,B的坐标分别为(3+c,2)、(c,1),再设反比例函数的解析式为y1=,将点C,B的坐标代入所设解析式即可求得c的值,由此即可得到点C,B的坐标,这样用待定系数法即可求得两个函数的解析式了;(3)结合(2)中所得点C,B的坐标和图象即可得到本题所求答案.详解:(1)作CNx轴于点N,CAN=CAB=AOB=90,CAN+CAN=90,CAN+OAB=90,CAN=OAB,A(2,0)B(0,1),OB=1,AO=2,在Rt

25、CAN和RtAOB, ,RtCANRtAOB(AAS),AN=BO=1,CN=AO=2,NO=NA+AO=3,又点C在第二象限,C(3,2);(2)设ABC沿x轴的正方向平移c个单位,则C(3+c,2),则B(c,1),设这个反比例函数的解析式为:y1=,又点C和B在该比例函数图象上,把点C和B的坐标分别代入y1=,得1+2c=c,解得c=1,即反比例函数解析式为y1=, 此时C(3,2),B(1,1),设直线BC的解析式y2=mx+n, , ,直线CB的解析式为y2=x+3; (3)由图象可知反比例函数y1和此时的直线BC的交点为C(3,2),B(1,1),若y1y2时,则3x1 点睛:本题

26、是一道综合考查“全等三角形”、“一次函数”、“反比例函数”和“平移的性质”的综合题,解题的关键是:(1)通过作如图所示的辅助线,构造出全等三角形RtCAN和RtAOB;(2)利用平移的性质结合点B、C的坐标表达出点C和B的坐标,由点C和B都在反比例函数的图象上列出方程,解方程可得点C和B的坐标,从而使问题得到解决.22、(1)y24x1. (2)点C为线段AP的中点. (3)存在点D,使四边形BCPD为菱形,点D【答案解析】测试卷分析:(1)由点A与点B关于y轴对称,可得AOBO,再由A的坐标求得B点的坐标,从而求得点P的坐标,将P坐标代入反比例解析式求出m的值,即可确定出反比例解析式,将A与P坐标代入一次函数解析式求出k与b的值,确定出一次函数解析式;(2)由AOBO,PBCO,即可证得结论 ;(3)假设存在这样的D点,使四边形BCPD为菱形,过点C作CD平行于x轴,交PB于点E,交反比例函数y-8测试卷解析:(1)点A与点B关于y轴对称,AOBO,A(4,0),B(4,0),P(4,2),把P(4,2)代入ymx得m反比例函数的解析式:y8x把A(4,0),P(4,2)代入ykxb得:0=-4k+b2=4k+b,解得:所以一次函数的解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论