2023学年河北省邯郸市鸡泽县中考数学最后一模试卷含答案解析_第1页
2023学年河北省邯郸市鸡泽县中考数学最后一模试卷含答案解析_第2页
2023学年河北省邯郸市鸡泽县中考数学最后一模试卷含答案解析_第3页
2023学年河北省邯郸市鸡泽县中考数学最后一模试卷含答案解析_第4页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023年河北省邯郸市鸡泽县中考数学最后一模试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在测试卷卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在测试卷卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,

2、请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1如图1,在矩形ABCD中,动点E从A出发,沿ABC方向运动,当点E到达点C时停止运动,过点E作EFAE交CD于点F,设点E运动路程为x,CFy,如图2所表示的是y与x的函数关系的大致图象,给出下列结论:a3;当CF时,点E的运动路程为或或,则下列判断正确的是( )A都对B都错C对错D错对2下列图形中,既是轴对称图形又是中心对称图形的是ABCD3小明和小亮按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列说法中正确的是()A小明不是胜就是输,所以小明胜的概率为B小明胜的概率是,所以输的概率是C两人出相同手势的概率为D小明

3、胜的概率和小亮胜的概率一样4如图,O的直径AB与弦CD的延长线交于点E,若DE=OB,AOC=84,则E等于()A42B28C21D205sin60的值为()ABCD6我们知道:四边形具有不稳定性如图,在平面直角坐标系中,边长为4的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D处,则点C的对应点C的坐标为()A(,2)B(4,1)C(4,)D(4,)7如图,边长为1的正方形ABCD绕点A逆时针旋转30到正方形ABCD,图中阴影部分的面积为( )ABCD8等腰三角形一边长等于5,一边长等于10,它的周长是( )A20B25C

4、20或25D159已知一次函数y=axxa+1(a为常数),则其函数图象一定过象限()A一、二B二、三C三、四D一、四10过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在矩形ABCD中,过点A的圆O交边AB于点E,交边AD于点F,已知AD=5,AE=2,AF=1如果以点D为圆心,r为半径的圆D与圆O有两个公共点,那么r的取值范围是_12某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动,以下是根据调查结果绘制的统计图表的一部分 那么

5、,其中最喜欢足球的学生数占被调查总人数的百分比为_%13如图,在ABC中,点D是AB边上的一点,若ACDB,AD1,AC2,ADC的面积为1,则BCD的面积为_14对于任意实数a、b,定义一种运算:ab=aba+b1例如,15=151+51=ll请根据上述的定义解决问题:若不等式3x1,则不等式的正整数解是_15若式子在实数范围内有意义,则x的取值范围是_16RtABC中,ABC=90,AB=3,BC=4,过点B的直线把ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是_三、解答题(共8题,共72分)17(8分)(1)计算: ; (2)解不等式组 :18(8分)如图,

6、一盏路灯沿灯罩边缘射出的光线与地面BC交于点B、C,测得ABC45,ACB30,且BC20米(1)请用圆规和直尺画出路灯A到地面BC的距离AD;(不要求写出画法,但要保留作图痕迹)(2)求出路灯A离地面的高度AD(精确到0.1米)(参考数据:1.414,1.732)19(8分)如图,ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(3,4)(1)画出ABC关于y轴的对称图形A1B1C1,并写出B1点的坐标;(2)画出ABC绕原点O旋转180后得到的图形A2B2C2,并写出B2点的坐标;(3)在x轴上求作一点P,使PAB的周长最小,并直接写出点P的坐标20(8分)我们已经知道一些特殊的勾

7、股数,如三连续正整数中的勾股数:3、4、5;三个连续的偶数中的勾股数6、8、10;事实上,勾股数的正整数倍仍然是勾股数另外利用一些构成勾股数的公式也可以写出许多勾股数,毕达哥拉斯学派提出的公式:a2n+1,b2n2+2n,c2n2+2n+1(n为正整数)是一组勾股数,请证明满足以上公式的a、b、c的数是一组勾股数然而,世界上第一次给出的勾股数公式,收集在我国古代的着名数学着作九章算术中,书中提到:当a(m2n2),bmn,c(m2+n2)(m、n为正整数,mn时,a、b、c构成一组勾股数;利用上述结论,解决如下问题:已知某直角三角形的边长满足上述勾股数,其中一边长为37,且n5,求该直角三角形

8、另两边的长21(8分)已知:AB为O上一点,如图,BH与O相切于点B,过点C作BH的平行线交AB于点E.(1)求CE的长;(2)延长CE到F,使,连结BF并延长BF交O于点G,求BG的长;(3)在(2)的条件下,连结GC并延长GC交BH于点D,求证:22(10分)网瘾低龄化问题已经引起社会各界的高度关注,有关部门在全国范围内对1235岁的网瘾人群进行了简单的随机抽样调查,绘制出以下两幅统计图请根据图中的信息,回答下列问题:(1)这次抽样调查中共调查了人;(2)请补全条形统计图;(3)扇形统计图中1823岁部分的圆心角的度数是;(4)据报道,目前我国1235岁网瘾人数约为2000万,请估计其中1

9、223岁的人数 23(12分)先化简,再求值:,其中x=124 “食品安全”受到全社会的广泛关注,我区兼善中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面的两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 ;(2)请补全条形统计图;(3)若对食品安全知识达到“了解”程度的学生中,男、女生的比例恰为2:3,现从中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率2023学年模拟测试卷参考答案(含详细解析)一、

10、选择题(共10小题,每小题3分,共30分)1、A【答案解析】由已知,AB=a,AB+BC=5,当E在BC上时,如图,可得ABEECF,继而根据相似三角形的性质可得y=,根据二次函数的性质可得,由此可得a=3,继而可得y=,把y=代入解方程可求得x1=,x2=,由此可求得当E在AB上时,y=时,x=,据此即可作出判断【题目详解】解:由已知,AB=a,AB+BC=5,当E在BC上时,如图,E作EFAE,ABEECF,y=,当x=时,解得a1=3,a2=(舍去),y=,当y=时,=,解得x1=,x2=,当E在AB上时,y=时,x=3=,故正确,故选A【答案点睛】本题考查了二次函数的应用,相似三角形的

11、判定与性质,综合性较强,弄清题意,正确画出符合条件的图形,熟练运用二次函数的性质以及相似三角形的判定与性质是解题的关键2、D【答案解析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【题目详解】解:A. 是轴对称图形,但不是中心对称图形,故不符合题意;B. 不是轴对称图形,是中心对称图形,故不符合题意;C. 是轴对称图形,但不是中心对称图形,故不符合题意;D. 既是轴对称图形又是中心对称图形,故符合题意故

12、选D.【答案点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.3、D【答案解析】利用概率公式,一一判断即可解决问题.【题目详解】A、错误小明还有可能是平;B、错误、小明胜的概率是,所以输的概率是也是;C、错误两人出相同手势的概率为;D、正确小明胜的概率和小亮胜的概率一样,概率都是;故选D【答案点睛】本题考查列表法、树状图等知识用到的知识点为:概率=所求情况数与总情况数之比4、B【答案解析】利用OB=DE,OB=OD得到DO=DE,则E=DOE,根据三角形外角性质得1=DOE+E,所以1=2E,同理得到AOC=C+E=3E,然后利用E=AOC

13、进行计算即可【题目详解】解:连结OD,如图,OB=DE,OB=OD,DO=DE,E=DOE,1=DOE+E,1=2E,而OC=OD,C=1,C=2E,AOC=C+E=3E,E=AOC=84=28故选:B【答案点睛】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等)也考查了等腰三角形的性质5、B【答案解析】解:sin60=故选B6、D【答案解析】由已知条件得到AD=AD=4,AO=AB=2,根据勾股定理得到OD= =2,于是得到结论【题目详解】解:AD=AD=4,AO=AB=1,OD=2,CD=4,CDAB,C(4,2),故选:D【答案点睛】本题考查正方

14、形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题关键7、C【答案解析】设BC与CD的交点为E,连接AE,利用“HL”证明RtABE和RtADE全等,根据全等三角形对应角相等DAEBAE,再根据旋转角求出DAB60,然后求出DAE30,再解直角三角形求出DE,然后根据阴影部分的面积正方形ABCD的面积四边形ADEB的面积,列式计算即可得解【题目详解】如图,设BC与CD的交点为E,连接AE,在RtABE和RtADE中,RtABERtADE(HL),DAEBAE,旋转角为30,DAB60,DAE6030,DE1,阴影部分的面积112(1)1故选C【答案点睛】本题考查了旋转的性质,正方形的性

15、质,全等三角形判定与性质,解直角三角形,利用全等三角形求出DAEBAE,从而求出DAE30是解题的关键,也是本题的难点8、B【答案解析】题目中没有明确腰和底,故要分情况讨论,再结合三角形的三边关系分析即可.【题目详解】当5为腰时,三边长为5、5、10,而,此时无法构成三角形;当5为底时,三边长为5、10、10,此时可以构成三角形,它的周长故选B.9、D【答案解析】分析:根据一次函数的图形与性质,由一次函数y=kx+b的系数k和b的符号,判断所过的象限即可.详解:y=axxa+1(a为常数),y=(a-1)x-(a-1)当a-10时,即a1,此时函数的图像过一三四象限;当a-10时,即a1,此时

16、函数的图像过一二四象限.故其函数的图像一定过一四象限.故选D.点睛:此题主要考查了一次函数的图像与性质,利用一次函数的图像与性质的关系判断即可.一次函数y=kx+b(k0,k、b为常数)的图像与性质:当k0,b0时,图像过一二三象限,y随x增大而增大;当k0,b0时,图像过一三四象限,y随x增大而增大;当k0,b0时,图像过一二四象限,y随x增大而减小;当k0,b0,图像过二三四象限,y随x增大而减小.10、B【答案解析】测试卷解析:选项折叠后都不符合题意,只有选项折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,与正方体三个剪去三角形交于一个顶点符合.故选B.二、填空题(本大题共6个小题

17、,每小题3分,共18分)11、【答案解析】因为以点D为圆心,r为半径的圆D与圆O有两个公共点,则圆D与圆O相交,圆心距满足关系式:|R-r|dR+r,求得圆D与圆O的半径代入计算即可.【题目详解】连接OA、OD,过O点作ONAE,OMAF.AN=AE=1,AM=AF=2,MD=AD-AM=3四边形ABCD是矩形BAD=ANO=AMO=90,四边形OMAN是矩形OM=AN=1OA=,OD=以点D为圆心,r为半径的圆D与圆O有两个公共点,则圆D与圆O相交【答案点睛】本题考查了圆与圆相交的条件,熟记圆与圆相交时圆的半径与圆心距的关系是关键.12、1%【答案解析】依据最喜欢羽毛球的学生数以及占被调查总

18、人数的百分比,即可得到被调查总人数,进而得出最喜欢篮球的学生数以及最喜欢足球的学生数占被调查总人数的百分比【题目详解】被调查学生的总数为1020%=50人,最喜欢篮球的有5032%=16人,则最喜欢足球的学生数占被调查总人数的百分比=100%=1%,故答案为:1【答案点睛】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系13、1【答案解析】由ACD=B结合公共角A=A,即可证出ACDABC,根据相似三角形的性质可得出()2,结合ADC的面积为1,即可求出BCD的面积【题目详解】ACDB

19、,DACCAB,ACDABC,()2()2,SABC4SACD4,SBCDSABCSACD411故答案为1【答案点睛】本题考查相似三角形的判定与性质,解题的关键是掌握相似三角形的判定与性质.14、2【答案解析】【分析】根据新定义可得出关于x的一元一次不等式,解之取其中的正整数即可得出结论【题目详解】3x=3x3+x22,x,x为正整数,x=2,故答案为:2【答案点睛】本题考查一元一次不等式的整数解以及实数的运算,通过解不等式找出x是解题的关键15、x1【答案解析】分式有意义的条件是分母不等于零【题目详解】式子在实数范围内有意义,x+10,解得:x-1故答案是:x-1【答案点睛】考查的是分式有意

20、义的条件,掌握分式有意义的条件是解题的关键16、3.1或4.32或4.2【答案解析】【分析】在RtABC中,通过解直角三角形可得出AC=5、SABC=1,找出所有可能的分割方法,并求出剪出的等腰三角形的面积即可【题目详解】在RtABC中,ACB=90,AB=3,BC=4,AB=5,SABC=ABBC=1沿过点B的直线把ABC分割成两个三角形,使其中只有一个是等腰三角形,有三种情况:当AB=AP=3时,如图1所示,S等腰ABP=SABC=1=3.1;当AB=BP=3,且P在AC上时,如图2所示,作ABC的高BD,则BD=,AD=DP=1.2,AP=2AD=3.1,S等腰ABP=SABC=1=4.

21、32;当CB=CP=4时,如图3所示,S等腰BCP=SABC=1=4.2;综上所述:等腰三角形的面积可能为3.1或4.32或4.2,故答案为:3.1或4.32或4.2【答案点睛】本题考查了勾股定理、等腰三角形的性质以及三角形的面积,找出所有可能的分割方法,并求出剪出的等腰三角形的面积是解题的关键三、解答题(共8题,共72分)17、(1);(2)【答案解析】(1)根据幂的运算与实数的运算性质计算即可.(2)先整理为最简形式,再解每一个不等式,最后求其解集.【题目详解】(1)解:原式= (2)解不等式,得 . 解不等式,得 . 原不等式组的解集为【答案点睛】本题考查了实数的混合运算和解一元一次不等

22、式组,熟练掌握和运用相关运算性质是解答关键.18、(1)见解析;(2)是7.3米【答案解析】(1)图1,先以A为圆心,大于A到BC的距离为半径画弧交BC与EF两点,然后分别以E、F为圆心画弧,交点为G,连接AG,与BC交点点D,则ADBC;图2,分别以B、C为圆心,BA为半径画弧,交于点G,连接AG,与BC交点点D,则ADBC;(2)在ABD中,DB=AD;在ACD中,CD=AD,BC=BD+CD,由此可以建立关于AD的方程,解方程求解【题目详解】解:(1)如下图,图1,先以A为圆心,大于A到BC的距离为半径画弧交BC与EF两点,然后分别以E、F为圆心画弧,交点为G,连接AG,与BC交点点D,

23、则ADBC;图2,分别以B、C为圆心,BA为半径画弧,交于点G,连接AG,与BC交点点D,则ADBC;(2)设ADx,在RtABD中,ABD45,BDADx,CD20 xtanACD,即tan30,x10(1)7.3(米)答:路灯A离地面的高度AD约是7.3米【答案点睛】解此题关键是把实际问题转化为数学问题,把实际问题抽象到解直角三角形中,利用三角函数解答即可19、(1)画图见解析;(2)画图见解析;(3)画图见解析.【答案解析】测试卷分析:(1)、根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)、根据网格结构找出点A、B、C关于原点的对称点A2、B2

24、、C2的位置,然后顺次连接即可;(3)、找出点A关于x轴的对称点A,连接AB与x轴相交于一点,根据轴对称确定最短路线问题,交点即为所求的点P的位置,然后连接AP、BP并根据图象写出点P的坐标即可测试卷解析:(1)、A1B1C1如图所示;B1点的坐标(-4,2) (2)、A2B2C2如图所示;B2点的坐标:(-4,-2) (3)、PAB如图所示,P(2,0)考点:(1)、作图-旋转变换;(2)、轴对称-最短路线问题;(3)、作图-平移变换20、 (1)证明见解析;(2)当n5时,一边长为37的直角三角形另两边的长分别为12,1【答案解析】(1)根据题意只需要证明a2+b2c2,即可解答(2)根据

25、题意将n5代入得到a (m252),b5m,c (m2+25),再将直角三角形的一边长为37,分别分三种情况代入a (m252),b5m,c (m2+25),即可解答【题目详解】(1)a2+b2(2n+1)2+(2n2+2n)24n2+4n+1+4n4+8n3+4n24n4+8n3+8n2+4n+1,c2(2n2+2n+1)24n4+8n3+8n2+4n+1,a2+b2c2,n为正整数,a、b、c是一组勾股数;(2)解:n5a (m252),b5m,c (m2+25),直角三角形的一边长为37,分三种情况讨论,当a37时, (m252)37,解得m3 (不合题意,舍去)当y37时,5m37,解

26、得m (不合题意舍去);当z37时,37 (m2+n2),解得m7,mn0,m、n是互质的奇数,m7,把m7代入得,x12,y1综上所述:当n5时,一边长为37的直角三角形另两边的长分别为12,1【答案点睛】此题考查了勾股数和勾股定理,熟练掌握勾股定理是解题关键21、 (1) CE=4;(2)BG=8;(3)证明见解析.【答案解析】(1)只要证明ABCCBE,可得,由此即可解决问题;(2)连接AG,只要证明ABGFBE,可得,由BE4,再求出BF,即可解决问题;(3)通过计算首先证明CFFG,推出FCGFGC,由CFBD,推出GCFBDG,推出BDGBGD即可证明【题目详解】解:(1)BH与O相切于点B,ABBH,BHCE,CEAB,AB是直径,CEB=ACB=90,CBE=ABC,ABCCBE,AC=,CE=4(2)连接AGFEB=AGB=90,EBF=ABG,ABGFBE,BE=4,BF= ,BG=8(3)易知CF=4+=5,GF=BGBF=5,CF=GF,FCG=FGC,CFBD,GCF=BDG,BDG=BGD,BG=BD【答案点睛】本题考查的是切线的性质、相似三角形的判定和性质、勾股

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论