版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题
2、目要求的。1设,则“”是“”的A必要不充分条件B充分不必要条件C充要条件D既不充分也不必要条件2学校新入职的5名教师要参加由市教育局组织的暑期3期上岗培训,每人只参加其中1期培训,每期至多派2人,由于时间上的冲突,甲教师不能参加第一期培训,则学校不同的选派方法有( )A种B种C种D种3奇函数在区间上单调递减,且,则不等式的解集是( )ABCD4已知,则除以9所得的余数是A2B3C5D75已知函数,若只有一个极值点,则实数的取值范围是ABCD6已知,则( )ABCD7有件产品,其中件是次品,从中任取件,若表示取得次品的件数,则( )ABCD8已知函数, ,若对,,使成立,则实数的取值范围是( )
3、ABCD9若,且,则“”是“方程表示焦点在y轴上的椭圆”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件10一工厂生产某种产品的生产量(单位:吨)与利润(单位:万元)的部分数据如表所示:从所得的散点图分析可知,与线性相关,且回归方程为,则( )ABCD11下列四个命题中真命题是()A同垂直于一直线的两条直线互相平行B底面各边相等,侧面都是矩形的四棱柱是正四棱柱C过空间任一点与两条异面直线都垂直的直线有且只有一条D过球面上任意两点的大圆有且只有一个12从混有4张假钞的10张一百元纸币中任意抽取3张,若其中一张是假币的条件下,另外两张都是真币的概率为( )ABCD二、填空题
4、:本题共4小题,每小题5分,共20分。13不等式的解集是_14已知是等差数列,公差不为零若,成等比数列,且,则 , 15,则使成立的值是_.16现有个大人,个小孩站一排进行合影.若每个小孩旁边不能没有大人,则不同的合影方法有_种(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设,已知,为关于的二次方程两个不同的虚根,(1)若,求实数的取值范围;(2)若,求实数,的值.18(12分)设椭圆的右焦点为,离心率为,过点且与轴垂直的直线被椭圆截得的线段长为.(1)求椭圆的方程;(2)如图,.分别为椭圆的左.右顶点,过点的直线与椭圆交于.两点.若,求直线的方程.
5、19(12分)已知等比数列an的前n项和Sn,满足S4(1)求数列an(2)设数列bn满足a1b1-a220(12分)已知(1)求函数的单调递增区间与对称轴方程;(2)当时,求的最大值与最小值21(12分)的内角,所对的边分别为,向量与平行()求;()若,求的面积22(10分)已知函数.(1)当,时,求函数的值域;(2)若函数在上的最大值为1,求实数的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据绝对值不等式和三次不等式的解法得到解集,根据小范围可推大范围,大范围不能推小范围得到结果.【详解】解得到,解,得到
6、,由则一定有;反之,则不一定有;故“”是“”的充分不必要条件.故答案为:B.【点睛】判断充要条件的方法是:若pq为真命题且qp为假命题,则命题p是命题q的充分不必要条件;若pq为假命题且qp为真命题,则命题p是命题q的必要不充分条件;若pq为真命题且qp为真命题,则命题p是命题q的充要条件;若pq为假命题且qp为假命题,则命题p是命题q的即不充分也不必要条件判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系2、B【解析】由题意可知这是一个分类计数问题.一类是:第一期培训派1人;另一类是第一期培训派2人,分别求出每类的选派方法,最后根据分类计数原理,
7、求出学校不同的选派方法的种数.【详解】解:第一期培训派1人时,有种方法, 第一期培训派2人时,有种方法,故学校不同的选派方法有,故选B.【点睛】本题考查了分类计数原理,读懂题意是解题的关键,考查了分类讨论思想.3、A【解析】根据函数为奇函数,以及上的单调性,判断出上的单调性,求得的值,对分为四种情况讨论,由此求得不等式的解集,进而求得的解集.【详解】由于函数为奇函数,且在上递减,故在上递减,由于,所以当或时,;当或时,.所以当或时.故当或即或时,.所以不等式的解集为.故本小题选A.【点睛】本小题主要考查函数的奇偶性、单调性,考查函数变换,考查含有函数符号的不等式的解法,属于中档题.4、D【解析
8、】根据组合数的性质,将化简为,再展开即可得出结果.【详解】,所以除以9的余数为1选D.【点睛】本题考查组合数的性质,考查二项式定理的应用,属于基础题.5、C【解析】由,令,解得或,令,利用导数研究其单调性、极值,得出结论.【详解】,令,解得或,令,可得,当时,函数取得极小值,所以当时,令,解得,此时函数 只有一个极值点,当时,此时函数 只有一个极值点1,满足题意,当时不满足条件,舍去.综上可得实数的取值范围是,故选C.【点睛】本题主要考查了利用导数研究函数的单调性与极值、方程与不等式的解法、分类讨论思想,属于难题.6、C【解析】利用指数函数、对数函数的单调性,将a,b,c分别与1和0比较,得到
9、结论.【详解】因为所以故选:C【点睛】本题主要考查指数函数、对数函数的单调性的应用,还考查了转化化归的思想和理解辨析的能力,属于基础题.7、B【解析】由题意,知取0,1,2,3,利用超几何分布求出概率,即可求解【详解】根据题意, 故选:B.【点睛】本题考查利用超几何分布求概率,属基础题.8、A【解析】由题意得“对,,使成立”等价于“”,当且仅当时等号成立在中,由,解得令,则,(其中)由,解得,又,故,实数的取值范围是选A点睛:(1)对于求或型的最值问题利用绝对值三角不等式更方便形如的函数只有最小值,形如的函数既有最大值又有最小值(2)求函数的最值时要根据函数解析式的特点选择相应的方法,对于含有
10、绝对值符号的函数求最值时,一般采用换元的方法进行,将问题转化为二次函数或三角函数的问题求解9、B【解析】由指数函数的单调性可得;由椭圆方程可得,再由充分必要条件的定义,即可得到所求结论【详解】解:若,则,若方程表示焦点在y轴上的椭圆,则,即“”是“方程表示焦点在y轴上的椭圆”的必要不充分条件.故选:【点睛】本题考查指数函数的单调性以及椭圆方程,考查充分必要条件的定义,考查推理能力,属于基础题10、C【解析】根据表格中的数据计算出和,再将点的坐标代入回归直线方程可求出实数的值.【详解】由题意可得,由于回归直线过样本中心点,则有,解得,故选:C.【点睛】本题考查利用回归直线方程求原始数据,解题时要
11、充分利用“回归直线过样本中心点”这一结论的应用,考查运算求解能力,属于基础题.11、C【解析】通过“垂直于同一直线的两条直线的位置关系不确定”可判断A是否正确;通过“底面各边相等,侧面都是矩形的四棱柱底面不一定是正方形”可判断B是否正确;通过“两条异面直线的公垂线是唯一的,所以经过空间任一点与两条异面直线都垂直的直线有且只有一条”可判断C是否正确;通过“经过球面上任意两点的大圆有无数个”可判断D是否正确。【详解】A项:垂直于同一直线的两条直线不一定互相平行,故A错;B项:底面各边相等,侧面都是矩形的四棱柱是直四棱柱,不一定是正四棱柱,故B错;C项:两条异面直线的公垂线是唯一的,所以经过空间任一
12、点与两条异面直线都垂直的直线有且只有一条,故C正确;D项:过球面上任意两点的大圆有无数个,故D错,故选C项。【点睛】本题考查了命题真假的判定以及解析几何的相关性质,考查了推理能力,考查了数形结合思想,属于基础题,在进行解析几何的相关性质的判断时,可以根据图像来判断。12、A【解析】分析:直接利用条件概率公式求解.详解:由条件概率公式得.故答案为A点睛:(1)本题主要考查条件概率,意在考查学生对条件概率的掌握水平.(2) 条件概率一般有“在已发生的条件下”这样的关键词,表明这个条件已经发生, 发生了才能称为条件概率.但是有时也没有,要靠自己利用条件概率的定义识别.二、填空题:本题共4小题,每小题
13、5分,共20分。13、【解析】分析:把不等式化为同底的不等式,利用指数函数的单调性即可求解详解:原不等式可以化为,所以,故或者,不等式的解集为,填点睛:一般地,对于不等式,(1)如果,则原不等式等价于 ;(2)如果,则原不等式等价于 .14、【解析】根据题意列出关于、的方程组,即可解出这两个量的值.【详解】由题可得,故有,又因为,即,所以.【点睛】本题考查等差数列基本量的计算,解题的关键就是根据题意列出关于首项和公差的方程组进行求解,考查运算求解能力,属于中等题.15、-4或2【解析】当0时, ;当 时,由此求出使成立的值【详解】,当0时,解得 当 时,解得 故答案为-4或2.【点睛】本题考查
14、函数值的求法及应用,是基础题,解题时要认真审题,注意函数性质的合理运用16、【解析】分析:根据题意可得可以小孩为对象进行分类讨论:第一类:2个小孩在一起,第二类小孩都不相邻.分别计算求和即可得出结论。详解:根据题意可得可以小孩为对象进行分类讨论:第一类:2个小孩在一起:,第二类:小孩都不在一起:,故不同的合影方法有216+144=360种,故答案为360点睛:考查计数原理和排列组合的综合,对于此类题首先要把题意分析清楚,分清楚所讨论的类别,再根据讨论情况逐一求解即可,注意计算的准确性.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1) ;(2),【解析】(1)由题可得
15、二次函数的判别式小于0,列式求解即可.(2)利用韦达定理代入可求得的关系,再化简利用韦达定理表示,换成的形式进行求解即可.【详解】(1)由题二次函数的判别式小于0,故,解得.(2)由为关于的二次方程两个不同的虚根可得, ,又则,得,因为,故,又,故 故,【点睛】本题主要考查了一元二次方程的复数根的性质,注意的意义为的模长为2,故.属于中等题型.18、(1);(2)【解析】(1)根据题意,得出及, 求得的值,即可得到椭圆的标准方程;(2)由(1)设直线的方程为,联立方程组,根据根与系数的关系,求得,再根据向量的数量积的运算,列出方程,求得的值,即可得到直线的方程.【详解】(1)因为椭圆的离心率为
16、,所以, 易得过右焦点且与轴垂直的直线被椭圆截得的线段长为, 解得,故椭圆的方程为;(2)由(1)知,右焦点的坐标为,于是可设直线的方程为,设,由 得, 由韦达定理得,又易知,所以,因此 ,而,所以,解得,故直线的方程为,即.【点睛】本题主要考查椭圆的标准方程的求解、及直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.19、(1)an【解析】(1)将题目中的条件转化为首项和公比的式子,于
17、是可得到通项公式;(2)通过条件先求出数列bn的通项,要想Tn【详解】解:(1)2SS所以a(2)当n=1时,a1当n2 时,-1n+1将n=1代a1bbn当n5时,bn0, 当n6所以T【点睛】本题主要考查等比数列的通项公式,数列的最值问题,意在考查学生的基础知识,计算能力和分析能力,难度不大.20、(1)单调递增区间为,kZ对称轴方程为,其中kZ(2)f(x)的最大值为2,最小值为1【解析】(1)因为,由,求得,kZ,可得函数f(x)的单调递增区间为,kZ由,求得,kZ故f(x)的对称轴方程为,其中kZ(2)因为,所以,故有,故当即x=0时,f(x)的最小值为1,当即时,f(x)的最大值为221、();()【解析】试题分析:(1)根据平面向量,列出方程,在利用正弦定理求出的值,即可求解角的大小;(2)由余弦定理,结合基本不等式求出的最大值,即得的面积的最大值.试题解析:(1)因为向量与平行,所以,由正弦定理得,又,从而tanA,由于0A0,所以c3.故ABC的面积为bcsinA.考点:平面向量的共线应用;正弦定理与余弦定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《计量日宣传》课件
- 《评价判据》课件
- 鼻结核的健康宣教
- 2021年机械密封行业中密控股分析报告
- 2021年化工行业分析报告
- 《机械制造基础》课件-05篇 第一单元 特种加工概述
- 《计算机检索基础周》课件
- 光过敏的临床护理
- 《供应商考核办法》课件
- 毛发苔藓的临床护理
- 【MOOC】英文技术写作-东南大学 中国大学慕课MOOC答案
- 2024年21起典型火灾案例及消防安全知识专题培训(消防月)
- 人教版四年级上册数学【选择题】专项练习100题附答案
- DL-T 1476-2023 电力安全工器具预防性试验规程
- 国开《Windows网络操作系统管理》形考任务4-配置故障转移群集服务实训
- 石灰窑烘炉及开炉方案
- 复苏囊的使用PPT
- (完整版)工业与民用配电设计手册
- 教学论文】《自制教具应用于初中物理有效教学的研究》课题研究报告【教师职称评定】
- 安全生产工作者个人先进事迹材料(word版本)
- 执业药师注册委托书.doc
评论
0/150
提交评论