版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设定点,动圆过点且与直线相切.则动圆圆心的轨迹方程为( )ABCD2在中,若,则的外接圆半径,将此结论拓展到空间,可得出的正确结论是:在四面体中,若、两两互相垂直,则四面体的外接球半径( )ABCD3函数的部分图象大致为()ABCD4记函数
2、的定义域为,函数,若不等式对恒成立,则的取值范围为( )ABCD5设则( )A都大于2B至少有一个大于2C至少有一个不小于2D至少有一个不大于26某城市收集并整理了该市2017年1月份至10月份每月份最低气温与最高气温(单位:)的数据,绘制了折线图(如图).已知该市每月的最低气温与当月的最高气温两变量具有较好的线性关系,则根据该折线图,下列结论错误的是()A最低气温低于的月份有个B月份的最高气温不低于月份的最高气温C月温差(最高气温减最低气温)的最大值出现在月份D每月份最低气温与当月的最高气温两变量为正相关7某中学高二共有12个年级,考试时安排12个班主任监考,每班1人,要求有且只有8个班级是
3、自己的班主任监考,则不同的安排方案有( )A4455B495C4950D74258在ABC中,则角B的大小为( )ABCD或9已知=(2,3),=(3,t),=1,则=A-3B-2C2D310如图,向量对应的复数为,则复数的共轭复数是( )ABCD11设是曲线上的一个动点,记此曲线在点点处的切线的倾斜角为,则可能是( )ABCD12已知点满足,则到坐标原点的距离的点的概率为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13对不同的且,函数必过一个定点,则点的坐标是_.14已知点,则_15已知向量,若与垂直,则实数_16若,则,的大小关系是_三、解答题:共70分。解答应写出文字说
4、明、证明过程或演算步骤。17(12分)为了促进学生的全面发展,某市教育局要求本市所有学校重视社团文化建设,2014年该市某中学的某新生想通过考核选拨进入该校的“电影社”和“心理社”,已知该同学通过考核选拨进入这两个社团成功与否相互独立根据报名情况和他本人的才艺能力,两个社团都能进入的概率为,至少进入一个社团的概率为,并且进入“电影社”的概率小于进入“心理社”的概率()求该同学分别通过选拨进入“电影社”的概率和进入心理社的概率;()学校根据这两个社团的活动安排情况,对进入“电影社”的同学增加1个校本选修课学分,对进入“心理社”的同学增加0.5个校本选修课学分求该同学在社团方面获得校本选修课学分分
5、数不低于1分的概率18(12分)已知椭圆C:经过点, 是椭圆的两个焦点,是椭圆上的一个动点. (1)求椭圆的标准方程; (2)若点在第一象限,且,求点的横坐标的取值范围;19(12分)如图,四棱锥中,底面 ABCD为矩形,侧面为正三角形,且平面平面 E 为 PD 中点,AD=2.(1)证明平面AEC丄平面PCD;(2)若二面角的平面角满足,求四棱锥 的体积.20(12分)现在很多人喜欢自助游,2017年孝感杨店桃花节,美丽的桃花风景和人文景观迎来众多宾客.某调查机构为了了解“自助游”是否与性别有关,在孝感桃花节期间,随机抽取了人,得如下所示的列联表:赞成“自助游”不赞成“自助游”合计男性女性合
6、计(1)若在这人中,按性别分层抽取一个容量为的样本,女性应抽人,请将上面的列联表补充完整,并据此资料能否在犯错误的概率不超过前提下,认为赞成“自助游”是与性别有关系?(2)若以抽取样本的频率为概率,从旅游节大量游客中随机抽取人赠送精美纪念品,记这人中赞成“自助游”人数为,求的分布列和数学期望. 附: 21(12分)已知F1,F2分别为椭圆C:的左焦点.右焦点,椭圆上的点与F1的最大距离等于4,离心率等于,过左焦点F的直线l交椭圆于M,N两点,圆E内切于三角形F2MN;(1)求椭圆的标准方程(2)求圆E半径的最大值22(10分)已知椭圆:的离心率为,焦距为(1)求的方程;(2)若斜率为的直线与椭
7、圆交于,两点(点,均在第一象限),为坐标原点,证明:直线,的斜率依次成等比数列参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由题意,动圆圆心的轨迹是以为焦点的抛物线,求得,即可得到答案【详解】由题意知,动圆圆心到定点与到定直线的距离相等,所以动圆圆心的轨迹是以为焦点的抛物线,则方程为故选A【点睛】本题考查抛物线的定义,属于简单题2、A【解析】四面体中,三条棱、两两互相垂直,则可以把该四面体补成长方体,长方体的外接球就是四面体的外接球,则半径易求.【详解】四面体中,三条棱、两两互相垂直,则可以把该四面体补成长方体,是一
8、个顶点处的三条棱长.所以外接球的直径就是长方体的体对角线,则半径.故选A.【点睛】本题考查空间几何体的结构,多面体的外接球问题,合情推理.由平面类比到立体,结论不易直接得出时,需要从推理方法上进行类比,用平面类似的方法在空间中进行推理论证,才能避免直接类比得到错误结论.3、C【解析】根据函数的奇偶性与正负值排除判定即可.【详解】函数,故函数是奇函数,图像关于原点对称,排除B,D,当x0且x0,f(x)0,排除A,故选:C【点睛】本题主要考查了函数图像的判定,属于基础题型.4、C【解析】列不等式求出集合,设,可得既是奇函数又是增函数,故原题等价于,结合奇偶性和单调性以及分离参数思想可得在上恒成立
9、,根据的范围即可得结果.【详解】由得,即设,即函数在上为奇函数,又和为增函数,既是奇函数又是增函数由得,则,即在上恒成立,故选C.【点睛】本题主要考查了函数的奇偶性以及单调性的应用,恒成立问题,构造函数是解题的关键,属于中档题.5、C【解析】由基本不等式,a,b都是正数可解得【详解】由题a,b,c都是正数,根据基本不等式可得,若,都小于2,则与不等式矛盾,因此,至少有一个不小于2;当,都等于2时,选项A,B错误,都等于3时,选项D错误选C.【点睛】本题考查了基本不等式,此类题干中有多个互为倒数的项,一般都可以先用不等式求式子范围,再根据题目要求解题6、A【解析】由该市2017年1月份至10月份
10、各月最低气温与最高气温(单位:)的数据的折线图,得最低气温低于0的月份有3个【详解】由该市2017年1月份至10月份各月最低气温与最高气温(单位:)的数据的折线图,得:在A中,最低气温低于0的月份有3个,故A错误在B中,10月的最高气温不低于5月的最高气温,故B正确;在C中,月温差(最高气温减最低气温)的最大值出现在1月,故C正确;在D中,最低气温与最高气温为正相关,故D正确;故选:A【点睛】本题考查命题真假的判断,考查折线图等基础知识,考查运算求解能力,考查数形结合思想,是基础题7、A【解析】根据题意,分两步进行:先确定8个是自己的班主任老师监考的班级,然后分析剩余的4个班级的监考方案,计算
11、可得其情况数目,由分步计数原理计算可得答案【详解】某中学高二共有12个年级,考试时安排12个班主任监考,每班1人,要求有且只有8个班级是自己的班主任监考,首先确定8个是自己的班主任老师监考的班级,有种,而剩余的4个班级全部不能有本班的班主任监考,有种;由分步计数原理可得,共种不同的方案;故选:A.【点睛】本题解题关键是掌握分步计数原理和组合数计算公式,考查了分析能力和计算能力,属于中档题.8、A【解析】首先根据三角形内角和为,即可算出角的正弦、余弦值,再根据正弦定理即可算出角B【详解】在ABC中有,所以,所以,又因为,所以,所以,因为,所以由正弦定理得,因为,所以。所以选择A【点睛】本题主要考
12、查了解三角形的问题,在解决此类问题时常用到:1、三角形的内角和为。2、正弦定理。3、余弦定理等。属于中等题。9、C【解析】根据向量三角形法则求出t,再求出向量的数量积.【详解】由,得,则,故选C【点睛】本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大10、B【解析】由已知求得,代入,再由复数代数形式的乘除运算化简得答案【详解】解:由图可知,复数的共轭复数是故选:【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,属于基础题11、B【解析】分析:求出原函数的导函数,利用基本不等式求出导函数的值域,结合直线的斜率是直线倾斜角的正切值求解详解:由,得当且仅当 时上式
13、“=”成立 ,即曲线在点点处的切线的斜率小于等于-1则 ,又 ,故选:B 点睛:本题考查利用导数研究过曲线上某点处的切线方程,过曲线上某点处的切线的斜率,就是函数在该点处的导数值,是中档题12、B【解析】作出图象,得到点P的坐标围成的图形是以原点为中心的边长为正方形,到坐标原点O的距离的点P围成的图形是以原点为圆心,半径为1的圆,由此利用几何概型能求出到坐标原点O的距离的点P的概率【详解】点满足,当,时,;当,时,;当,时,;当,时,作出图象,得到点P的坐标围成的图形是以原点为中心的边长为正方形,到坐标原点O的距离的点P围成的图形是以原点为圆心,半径为1的圆,到坐标原点O的距离的点P的概率为:
14、故选:B.【点睛】本题考查概率的求法,几何概型等基础知识,考查运算求解能力,是中档题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据指数函数的图象恒过定点(0,1),求出函数f(x)必过的定点坐标【详解】根据指数函数的图象恒过定点(0,1),令42x0,x2,f(2)+34,点A的坐标是(2,4)故答案为(2,4)【点睛】本题考查了指数函数恒过定点的应用问题,属于基础题14、5【解析】分析:运用向量坐标的求法以及向量的模长公式即可.详解:点, ,.故答案为5.点睛:向量的坐标运算主要是利用加、减、数乘运算法则进行若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注
15、意方程思想的运用及正确使用运算法则15、-1【解析】由题意结合向量垂直的充分必要条件得到关于k的方程,解方程即可求得实数k的值.【详解】由平面向量的坐标运算可得:,与垂直,则,即:,解得:.【点睛】本题主要考查向量的坐标运算,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.16、【解析】分析:作差法,用,判断其符号详解:,所以,点睛:作差法是比较大小的基本方法,根式的分子有理化是解题的关键三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】()利用相互独立事件概率乘法公式和对立事件概率计算公式列出方程组,能求出结果()利用独立事件的概率乘
16、法公式分别求得分数为1和1.5时的概率,再利用互斥事件概率计算公式求得结果【详解】()根据题意得:,且p1p2,p1,p2()令该同学在社团方面获得校本选修课加分分数为,P(1)(1),P(1.5),该同学在社团方面获得校本选修课学分分数不低于1分的概率:p【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式、对立事件概率计算公式、互斥事件概率计算公式等基础知识,考查运算求解能力,是基础题18、(1);(2).【解析】分析:(1)由焦距得出焦点坐标,求出点M到两焦点的距离之和即为,从而可得;(2)用参数方程,设(),然后计算向量的数量积,可求得范围详解:(1)由已知得,同理,椭圆标准方程为
17、(2)设(),则,即点横坐标取值范围是点睛:在求椭圆的标准方程时,能用定义的就用定义,如已知曲线上一点坐标,两焦点坐标,可先求得此点到两焦点距离之和得出,再由求得,从而得标准方程这种方法可减少计算量,增加正确率19、(1)见解析;(2)2【解析】(1)要证平面平面,可证平面即可;(2)建立空间直角坐标系,计算出平面的法向量,平面的法向量,从而利用向量数量积公式求得长度,于是可求得体积.【详解】(1)取中点为, 中点为F,由侧面为正三角形,且平面平面知平面,故,又,则平面,所以,又,则,又是中点,则,由线面垂直的判定定理知平面,又平面,故平面平面. (2)如图所示,建立空间直角坐标系,令,则.由
18、(1)知为平面的法向量,令为平面的法向量,由于均与垂直,故即解得故,由,解得.故四棱锥的体积.【点睛】本题主要考查面面垂直的判定定理,二面角的向量求法,几何体的体积计算,建立合适的空间直角坐标系是解决此类问题的关键,意在考查学生的空间想象能力,转化能力,分析能力及计算能力.20、 (1)赞成“自助游”不赞成“自助游”合计男性女性合计在犯错误的概率不超过前提下,不能认为赞成“自助游”与性别有关系. (2)的分布列为:期望.【解析】试题分析:(1)根据分层抽样比为,可知女性共55人,从而可以知难行45人,即可填表,计算卡方,得出结论;(2)由题意知随机变量服从二项分布,从而利用公式计算分布列和期望试题解析:(1)赞
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 鲁科版高中化学选修1 化学与生活主题4 认识生活中的材料习题
- 手足外科出科理论知识考试试题及答案
- 行政费用控制策略计划
- 创意资本要素手册
- 博物馆文物保护工程合同三篇
- 教学任务分解计划
- 重症医学科抢救流程
- 2025年中考数学考点分类专题归纳之锐角三角函数和解直角三角形
- 儿童心理健康
- 海洋垃圾课件
- 2023年事业单位联考A类《综合应用能力》试题及答案
- 营养不良护理查房
- 桂林国际旅游胜地发展规划纲要解读样本
- 高考选科指导
- 广州金证研公司的笔试题
- 工程项目建设程序
- 新苏教版科学三年级上册学生活动手册答案
- 压疮用具的使用护理课件
- 临床医学概论课程研究报告
- 长春工业大学开题报告模板
- 中学信息技术教学中如何渗透德育教育
评论
0/150
提交评论