高一数学必修考试的重要知识点_第1页
高一数学必修考试的重要知识点_第2页
高一数学必修考试的重要知识点_第3页
高一数学必修考试的重要知识点_第4页
高一数学必修考试的重要知识点_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 高一数学必修考试的重要知识点高一数学必修考试的重要学问点1 定义: 从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,两直线平行;有无穷多解时,两直线重合;只有一解时,两直线相交于一点。常用直线向上方向与X轴正向的夹角(叫直线的倾斜角)或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。可以通过斜率来推断两条直线是否相互平行或相互垂直,也可计算它们的交角。直线与某个坐标轴的交点在该坐标轴上的坐标,称为直线在该坐标轴上的截距。直线在平面上的位置,由它的斜率和一个

2、截距完全确定。在空间,两个平(面相)交时,交线为一条直线。因此,在空间直角坐标系中,用两个表示平面的三元一次方程联立,作为它们相交所得直线的方程。 表达式: 斜截式:y=kx+b 两点式:(y-y1)/(y1-y2)=(x-x1)/(x1-x2) 点斜式:y-y1=k(x-x1) 截距式:(x/a)+(y/b)=0 补充一下:最基本的标准方程不要忘了,AX+BY+C=0, 由于,上面的四种直线方程不包含斜率K不存在的状况,如x=3,这条直线就不能用上面的四种形式表示,解题过程中尤其要留意,K不存在的状况。 练习题: 1.已知直线的方程是y+2=-x-1,则() A.直线经过点(2,-1),斜率

3、为-1 B.直线经过点(-2,-1),斜率为1 C.直线经过点(-1,-2),斜率为-1 D.直线经过点(1,-2),斜率为-1 【解析】选C.由于直线方程y+2=-x-1可化为y-(-2)=-x-(-1),所以直线过点(-1,-2),斜率为-1. 2.直线3x+2y+6=0的斜率为k,在y轴上的截距为b,则有() A.k=-,b=3B.k=-,b=-2 C.k=-,b=-3D.k=-,b=-3 【解析】选C.直线方程3x+2y+6=0化为斜截式得y=-x-3,故k=-,b=-3. 3.已知直线l的方程为y+1=2(x+),且l的斜率为a,在y轴上的截距为b,则logab的值为() A.B.2

4、C.log26D.0 【解析】选B.由题意得a=2,令x=0,得b=4,所以logab=log24=2. 4.直线l:y-1=k(x+2)的倾斜角为135,则直线l在y轴上的截距是() A.1B.-1C.2D.-2 【解析】选B.由于倾斜角为135,所以k=-1, 所以直线l:y-1=-(x+2), 令x=0得y=-1. 5.经过点(-1,1),斜率是直线y=x-2的斜率的2倍的直线是() A.x=-1B.y=1 C.y-1=(x+1)D.y-1=2(x+1) 【解析】选C.由已知得所求直线的斜率k=2=. 则所求直线方程为y-1=(x+1). 高一数学必修考试的重要学问点2 圆锥曲线性质:

5、一、圆锥曲线的定义 1.椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆. 2.双曲线:到两个定点的距离的差的肯定值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线.即. 3.圆锥曲线的统肯定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线.当01时为双曲线. 二、圆锥曲线的方程 1.椭圆:+ =1(ab0)或 + =1(ab0)(其中,a2=b2+c2) 2.双曲线:- =1(a0,b0)或 - =1(a0,b0)(其中,c2=a2+b2) 3.抛物线:y2=2px(p0),x2=2py(p0) 三、圆锥曲线的性质 1.椭圆:+ =1(

6、ab0) (1)范围:|x|a,|y|b(2)顶点:(a,0),(0,b)(3)焦点:(c,0)(4)离心率:e= (0,1)(5)准线:x= 2.双曲线:- =1(a0,b0)(1)范围:|x|a,yR(2)顶点:(a,0)(3)焦点:(c,0)(4)离心率:e= (1,+)(5)准线:x= (6)渐近线:y= x 3.抛物线:y2=2px(p0)(1)范围:x0,yR(2)顶点:(0,0)(3)焦点:( ,0)(4)离心率:e=1(5)准线:x=- 高一数学必修考试的重要学问点3 1.函数的概念:设A、B是非空的数集,假如根据某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都

7、有确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数.记作:y=f(x),xA.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合f(x)|xA叫做函数的值域. 留意:假如只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;函数的定义域、值域要写成集合或区间的形式. 定义域补充 能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必需大于零; (4)指数、对数式的

8、底必需大于零且不等于1. (5)假如函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合. (6)指数为零底不行以等于零 2.构成函数的三要素:定义域、对应关系和值域 再留意: (1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系打算的,所以,假如两个函数的定义域和对应关系完全全都,即称这两个函数相等(或为同一函数) (2)两个函数相等当且仅当它们的定义域和对应关系完全全都,而与表示自变量和函数值的字母无关。相同函数的推断(方法):表达式相同;定义域全都(两点必需同时具备) 值域补充 (1)、函数的值域取决于定义域和对应法则,

9、不论实行什么方法求函数的值域都应先考虑其定义域.(2).应熟识把握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解简单函数值域的基础.(3).求函数值域的常用方法有:直接法、反函数法、换元法、配方法、均值不等式法、判别式法、单调性法等. 3.函数图象学问归纳 (1)定义:在平面直角坐标系中,以函数y=f(x),(xA)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(xA)的图象. C上每一点的坐标(x,y)均满意函数关系y=f(x),反过来,以满意y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.即记为C=P(x,y)|y=f(

10、x),xA 图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成. (2)画法 A、描点法:依据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x,y),最终用平滑的曲线将这些点连接起来. B、图象变换法(请参考必修4三角函数) 常用变换方法有三种,即平移变换、伸缩变换和对称变换 (3)作用: 1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。提高解题的速度。 发觉解题中的错误。 4.快去了解区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3

11、)区间的数轴表示. 5.什么叫做映射 一般地,设A、B是两个非空的集合,假如按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f:AB” 给定一个集合A到B的映射,假如aA,bB.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象 说明:函数是一种特别的映射,映射是一种特别的对应,集合A、B及对应法则f是确定的;对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;对于映射f:AB来说,则应满意:()集合A中的每一个元素,在集合B中都

12、有象,并且象是的;()集合A中不同的元素,在集合B中对应的象可以是同一个;()不要求集合B中的每一个元素在集合A中都有原象。 常用的函数表示法及各自的优点: 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,留意推断一个图形是否是函数图象的依据;解析法:必需注明函数的定义域;图象法:描点法作图要留意:确定函数的定义域;化简函数的解析式;观看函数的特征;列表法:选取的自变量要有代表性,应能反映定义域的特征. 留意啊:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值 补充一:分段函数(参见课本P24-25) 在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必需把自变量代入相应的表

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论