下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 3/32021年高考理科数学全国三卷试题和答案解析 2018年高考理科全国三卷 一选择题 1、已知集合,则( ) A. B. C. D. 2、( ) A. B. C. D. 3、中国古建筑借助榫卯将木构件连接起来,构建的突出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视 图可以是( ) A. B. C. D. 4、若,则( ) A. B. C. D. 5、的展开方式中的系数为( ) A.10 B.20 C.40 D.80 6、直线分别与轴,轴交于两点,点在圆上,则 面积的取值范围是( ) A. B.
2、 C. D. 7、函数的图像大致为( ) A. B. C. D. 8、某群体中的每位成员使用移动支付的概率为,各成员的支付方式相互独立,设为该群体的为成员中使用移动支付的人数,则( ) A.0.7 B.0.6 C.0.4 D.0.3 9、的内角的对边分别为,若的面积为则=( ) A. B. C. D. 10、设是同一个半径为的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为( ) A. B. C. D. 11、设是双曲线的左,右焦点,是坐标原点,过作的一条逐渐近线的垂线,垂足为,若,则的离心率为( ) A. B.2 C. D. 12、设则( ) A. B. C. D. 13、已知
3、向量,若,则 14、曲线在点处的切线的斜率为,则 15、函数在的零点个数为 16、已知点和抛物线,过的焦点且斜率为的直线与交于两点。若,则 三解答题 17、等比数列中, 1.求的通项公式; 2.记为的前项和,若,求 18、某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式,为比较两种生产方式的效率,选取名工人,将他们随机分成两组,每组人,第一组工人用第一种生产方式,第二组工人用第二种生产方式,根据工人完成生产任务的工作时间(单位:)绘制了如下茎叶图: 1.根据茎叶图判断哪种生产方式的效率更高?并说明理由; 2.求名工人完成生产任务所需时间的中位数,并将完成生产任务
4、所需时间超过和不超过的工人数填入下面的列联表: 超过不超过 3.根据中的列联表,能否有的把握认为两种生产方式的效率有差异? 附: 19、如图,边长为的正方形所在的平面与半圆弧所在的平面垂直,是上异于 的点 1.证明:平面平面 2.当三棱锥体积最大时,求面与面所成 二面角的正弦值 20、已知斜率为的直线与椭圆交于点两点,线段的中点为 1.证明: 2.设为的右焦点,为上一点,且证明,成等差数列,并求该数列的公差 21、已知函数 1.若,证明:当时,;当, 2.若是的极大值点,求 22、 选修4-4:坐标系与参数方程(10分) 在平面直角坐标系中,的参数方程为为参数)过点且倾斜角为 的直线与交于两点 1.求的取值范围 2.求中点的轨迹参数方程 23、 选修4-5:不等式选讲 设函数 1.画出的图像 2.当时,求 的最小值 参考答案一选
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河北省2017年中考生物真题试题(含解析)
- 2024年度灯具安装施工合同
- 出国留学贷款代理服务协议2024
- 二零二四年度云计算平台建设与运营合作协议2篇
- 2024年度建筑施工合同标的建筑工程的设计和施工2篇
- 拆墙施工2024年度合同协议
- 二零二四年度农业种植与技术指导合同
- 二零二四年度技术服务合同标的及履行细则2篇
- 二零二四年度艺人经纪合同(含演出及广告代言)
- 二零二四年度碧桂园国际物流枢纽建设合同
- 期中测试卷(1-4单元)(试题)2024-2025学年六年级上册试题人教版
- 电子发票管理系统开发与维护合同
- 现代服务业课件
- 浙江省杭州市2024年中考英语真题(含答案)
- 成人术中非计划低体温预防与护理学习与预实践
- 生活饮用水、公共场所卫生管理系列国家强制性标准解读答案-2024年全国疾控系统“大学习”活动
- 《算法设计与分析基础》(Python语言描述) 课件 第5章回溯法1
- 人音版八年级上册第二单元 多彩音乐剧 《雪绒花》教案
- 2024年中国交流低噪声风机市场调查研究报告
- 教师成长案例数字赋能 创新教学 启智未来
- 2024-2030年中国海洋工程行业市场发展分析及前景趋势与投资前景研究报告
评论
0/150
提交评论