版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,若函数在上为增函数,则正实数a的取值范围为()ABCD2用数学归纳法证明不等式:,
2、则从到 时,左边应添加的项为( )ABCD3设函数f(x),g(x)在A,B上均可导,且f(x)g(x),则当AxB时,有()Af(x)g(x)Bf(x)+g(A)g(x)+f(A)Cf(x)g(x)Df(x)+g(B)g(x)+f(B)4若函数没有极值,则实数a的取值范围是( )ABCD5下列等式中,错误的是( )ABCD6对于椭圆,若点满足,则称该点在椭圆内,在平面直角坐标系中,若点A在过点的任意椭圆内或椭圆上,则满足条件的点A构成的图形为( )A三角形及其内部B矩形及其内部C圆及其内部D椭圆及其内部7已知函数,若,则的大小为( )ABCD8若实数a,b满足a+b0,则( )Aa,b都小于
3、0 Ba,b都大于0Ca,b中至少有一个大于0 Da,b中至少有一个小于09已知实数满足则的最大值是( )A-2B-1C1D210若函数在其定义域内的一个子区间上不是单调函数,则实数的取值范围是( )ABCD11设,是两个不同的平面,是直线且“”是“”的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件12已知,若将其图像右移个单位后,图象关于原点对称,则的最小值是 ( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13函数的图像在处的切线方程为_.14在平面直角坐标系中,若直线与椭圆在第一象限内交于点,且以为直径的圆恰好经过右焦点,则椭圆的离心率是_.
4、15已知复数满足,为虚数单位,则复数的模_.16已知则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)(本小题满分12分)已知,函数(I)当为何值时, 取得最大值?证明你的结论;(II) 设在上是单调函数,求的取值范围;(III)设,当时, 恒成立,求的取值范围18(12分)某手机代工厂对生产线进行升级改造评估,随机抽取了生产线改造前、后100个生产班次的产量进行对比,改造前、后手机产量(单位:百部)的频率分布直方图如下:(1)记表示事件:“改造前手机产量低于5000部”,视频率为概率,求事件的概率;(2)填写下面列联表,并根据列联表判断是否有的把握认为手机产量与
5、生产线升级改造有关:手机产量部手机产量部改造前改造后(3)根据手机产量的频率分布直方图,求改造后手机产量的中位数的估计值(精确到0.01).参考公式:随机变量的观测值计算公式:,其中.临界值表:0.1000.0500.0100.0012.7063.8416.63510.82819(12分)已知直线的方程为,圆的参数方程为(为参数),以原点为极点,轴正半轴为极轴,建立极坐标系(1)求直线与圆的交点的极坐标;(2)若为圆上的动点,求到直线的距离的最大值20(12分)的展开式一共有13项.(1)求展开式中二项式系数之和;(2)求展开式中的常数项21(12分)某中学学生会由8名同学组成,其中一年级有2
6、人,二年级有3人,三年级有3人,现从这8人中任意选取2人参加一项活动.(1)求这2人来自两个不同年级的概率;(2)设表示选到三年级学生的人数,求的分布列和数学期望.22(10分)已知复数满足:,且在复平面内对应的点位于第三象限.(I)求复数;()设,且,求实数的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】求f(x)的导数f(x),利用f(x)判定f(x)的单调性,求出f(x)的单调增区间,即得正实数a的取值范围【详解】f(x)lnx(a0),f(x)(x0),令f(x)0,得x,函数f(x)在(0,上f(x)0
7、,在,+)上f(x)0,f(x)在(0,上是减函数,在,+)上是增函数;函数f(x)在区间1,+)内是增函数,1,又a0,a1,实数a的取值范围是1,+);故选:B【点睛】本题考查了利用导数来研究函数的单调性问题,解题时应根据导数的正负来判定函数的单调性,利用函数的单调区间来解答问题,是中档题2、D【解析】将和式子表示出来,相减得到答案.【详解】时:时:观察知:应添加的项为答案选D【点睛】本题考查了数学归纳法,写出式子观察对应项是解题的关键.3、B【解析】试题分析:设F(x)=f(x)-g(x),在A,B上f(x)g(x),F(x)=f(x)-g(x)0,F(x)在给定的区间A,B上是减函数当
8、xA时,F(x)F(A),即f(x)-g(x)f(A)-g(A)即f(x)+g(A)g(x)+f(A)考点:利用导数研究函数的单调性4、A【解析】由已知函数解析式可得导函数解析式,根据导函数不变号,函数不存在极值点,对讨论,可得答案【详解】, ,当时,则,在上为增函数,满足条件;当时,则,即当 时, 恒成立,在上为增函数,满足条件综上,函数不存在极值点的充要条件是:故选:A【点睛】本题考查的知识点是函数在某点取得极值的条件,本题是一道基础题5、C【解析】分析:计算每一选项的左右两边,检查它们是否相等.详解:通过计算得到选项A,B,D的左右两边都是相等的.对于选项C,所以选项C是错误的.故答案为
9、C.点睛:本题主要考查排列组合数的计算,意在考查学生对这些基础知识的掌握水平和基本计算能力.6、B【解析】由在椭圆上,根据椭圆的对称性,则关于坐标轴和原点的对称点都在椭圆上,即可得结论【详解】设在过的任意椭圆内或椭圆上,则,即,由椭圆对称性知,都在任意椭圆上,满足条件的点在矩形上及其内部,故选:B【点睛】本题考查点到椭圆的位置关系考查椭圆的对称性由点在椭圆上,则也在椭圆上,这样过点的所有椭圆的公共部分就是矩形及其内部7、C【解析】对函数求导,确定函数的单调性,然后确定这三个数之间的大小关系,最后利用函数的单调性判断出的大小关系.【详解】,所以是上的增函数.,所以,故本题选C.【点睛】本题考查了
10、利用导数判断出函数的单调性,然后判断函数值大小关系.解决本题的重点是对指数式、对数式的比较,关键是对指数函数、对数函数的单调性的理解.8、D【解析】假设a,b都不小于0,即a0,b0,则a+b0,这与a+b0相矛盾,因此假设错误,即a,b中至少有一个小于0.9、C【解析】作出可行域,如图内部(含两边),作直线,向上平移直线,增加,当过点时,是最大值故选C10、B【解析】分析:求出导函数,求得极值点,函数在含有极值点的区间内不单调详解:,此函数在上是增函数,又,因此是的极值点,它在含有的区间内不单调,此区间为B故选B点睛:本题考查用导数研究函数的极值,函数在不含极值点的区间内一定是单调函数,因此
11、此只要求出极值点,含有极值点的区间就是正确的选项11、B【解析】试题分析:,得不到,因为可能相交,只要和的交线平行即可得到;,和没有公共点,即能得到;“”是“”的必要不充分条件故选B考点:必要条件、充分条件与充要条件的判断.【方法点晴】考查线面平行的定义,线面平行的判定定理,面面平行的定义,面面平行的判定定理,以及充分条件、必要条件,及必要不充分条件的概念,属于基础题;并得不到,根据面面平行的判定定理,只有内的两相交直线都平行于,而,并且,显然能得到,这样即可找出正确选项.12、C【解析】利用两角和差的三角公式化简函数的解析式,再利用函数yAsin(x+)的图象变换规律,三角函数的图象的对称性
12、,求得的最小值【详解】f(x)sinxcosx2sin(x) (xR),若将其图象右移(0)个单位后,可得y2sin(x)的图象;若所得图象关于原点对称,则k,kZ,故的最小值为,故选:C【点睛】本题主要考查两角和差的三角公式,函数yAsin(x+)的图象变换规律,三角函数的图象的对称性,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】对函数求导,把分别代入原函数与导数中分别求出切点坐标与切线斜率,进而求得切线方程。【详解】,函数的图像在处的切线方程为,即.【点睛】本题考查导数的几何意义和直线的点斜式,关键求出某点处切线的斜率即该点处的导数值,属于基础题。14、.【解析
13、】由题意可得轴,求得的坐标,由在直线上,结合离心率公式,解方程可得所求值【详解】解:以为直径的圆恰好经过右焦点,可得轴,令,可得,不妨设,由在直线上,可得,即为,由可得,解得(负的舍去).故答案为: .【点睛】本题考查椭圆的方程和性质,考查了圆的性质.本题的关键是由圆过焦点得出点的坐标.求离心率的做题思路是,根据题意求出或者列出一个关于 的方程,由椭圆或双曲线的的关系,进而求解离心率.15、.【解析】由得,再利用复数的除法法则将复数表示为一般形式,然后利用复数的模长公式计算出.【详解】,因此,故答案为.【点睛】本题考查复数的除法、复数模的计算,解题的关键就是利用复数的四则运算法则将复数表示为一
14、般形式来求解,考查计算能力,属于基础题.16、2【解析】由指数和对数函数的运算公式,计算即可.【详解】由得a=,由,得b=.所以= 故答案为:2【点睛】本题考查的是指数与对数的互化及对数公式的运算,熟练掌握公式是关键,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 ()答案见解析;() ;().【解析】试题分析:(I)求得f(x)=-x2+2(a-1)x+2aex,取得-x2+2(a-1)x+2a=0的根,即可得到数列的单调性,进而求解函数的最大值.(II)由(I)知,要使得在-1,1上单调函数,则:,即可求解a的取值范围;(III)由,分类参数得,构造新函数
15、(x1),利用导数求得函数h(x)的单调性和最值,即得到a的取值范围.试题解析:(I), ,由得,则,在和上单调递减,在上单调递增,又时,且在上单调递增,有最大值,当时取最大值(II)由(I)知: ,或,或;(III)当x1时f(x)g(x),即(-x2+2ax)ex,令,则,h(x)在上单调递增,x1时h(x)h(1)=1,又a0所以a的取值范围是.点睛:本题主要考查导数在函数中的应用,不等式的恒成立问题求得,考查了转化与化归思想、逻辑推理能力与计算能力导数是研究函数的单调性、极值(最值)最有效的工具,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,求解曲线在某点处的切
16、线方程; (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数; (3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题; (4)考查数形结合思想的应用 18、(1)0.1(2)有的把握认为手机产量与生产线升级改造有关,详见解析(3)(百部)【解析】(1)由改造前的频率分布直方图计算前五个小长方形的面积即可得到答案(2)由频率分布直方图补充表格,计算随机变量的观测值与临界值表中的数据比较即可得结论(3)先估计中位数所在区间,然后利用中位数左右两侧长方形面积相等列式计算即可【详解】解:(1)改造前手机产量低于5000部的频率为, 因此,事件的概率估计值为0.1 (2)根据手机产
17、量的频率分布直方图得列联表:手机产量部手机产量部改造前138改造后3466由于,故有的把握认为手机产量与生产线升级改造有关 (3)因为改造后手机产量的频率分布直方图中,手机产量低于5000部的直方图面积为,手机产量低于5500部的直方图面积为,所以中位数在之间,设改造后手机产量的中位数为,则 故改造后手机产量的中位数的估计值为(百部)【点睛】本题考查由频率分布直方图计算概率与中位数,独立性检验,属于简单题19、 (1) 对应的极坐标分别为, (2) 【解析】(I)由圆C的参数方程为(为参数),利用cos2+sin2=1化为普通方程,与直线方程联立解得交点坐标,利用可得极坐标(II)圆心(0,2
18、)到直线l的距离为d1,可得P到直线l的距离d的最大值为d1+r【详解】解:(I)直线:,圆: 联立方程组,解得或对应的极坐标分别为,. (II)设,则,当时,取得最大值.【点睛】本题考查了参数方程化为普通方程、极坐标方程化为直角坐标方程、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题20、(1);(2)7920【解析】先由的展开式一共有13项得,则直接可得(1)的结果,(2)根据展开式的通项,令,即可求出常数项.【详解】解:由的展开式一共有13项得,(1)由得展开式中二项式系数之和为;(2)由得展开式的通项为,令,得,所以展开式中的常数项为.【点睛】本题考查二项式定理及其应用,其中的展开式通项的熟练运用是关键,是基础题.21、 (1).(2)见解析.【解析】(1)正难则反,先求这2人来自同一年级的概率,再用1减去这个概率,即为这2人来自两个不同年级的概率;(2)先求X的所有可能的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论