版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题
2、目要求的。1下图是一个几何体的三视图,则该几何体的体积为( )ABCD2一个盒子装有4件产品,其中有3件一等品,1件二等品.从中不放回的取两次,每次取出一件.设事件为“第一次取到的是一等品”,事件为“第二次取到的是一等品”.则( )ABCD3已知,集合,集合,则从M到N的函数个数是()A6561B3363C2187D2104若是极坐标系中的一点,则四个点中与点重合的点有( )A1个B2个C3个D4个5某人射击一次命中目标的概率为,且每次射击相互独立,则此人射击 7次,有4次命中且恰有3次连续命中的概率为( )ABCD6曲线的极坐标方程化为直角坐标为( )ABCD7两射手彼此独立地向同一目标射击
3、,设甲射中的概率,乙射中的概率,则目标被击中的概率为( )A1.7B1C0.72D0.988已知空间向量OA向量OP=xOA+yOB+zOCA12B1C329点的直角坐标为,则点的极坐标为( )A B C D10函数的零点所在的大致区间是( )ABCD11若对于实数x,y有1-x2,y+11A5B6C7D812甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( )A36种B48种C96种D192种二、填空题:本题共4小题,每小题5分,共20分。13曲线在处的切线方程是_14为等比数列,若,则_.15学生到工厂劳动实践,利用打印技术制作模型.如图,该模
4、型为长方体挖去四棱锥后所得的几何体,其中为长方体的中心,分别为所在棱的中点,打印所用原料密度为,不考虑打印损耗,制作该模型所需原料的质量为_.16已知随机变量X的分布列为P(Xk)(k1,2,3,4),则a等于_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)当时,求不等式的解集;(2)若不等式的解集包含,求的取值范围.18(12分)一个多面体的三视图如图:主视图和左视图均为一个正方形上加一个等腰直角三角形,正方形的边长为,俯视图中正方形的边长也为.主视图和左视图 俯视图(1)画出实物的大致直观图形; (2)求此物体的表面积;(3)若,一个蚂蚁从该物
5、体的最上面的顶点开始爬,要爬到此物体下底面四个项点中的任意一个顶点,最短距离是多少?(精确到个单位)19(12分)已知等差数列的前项和为,且,.(1)求数列的通项公式;(2)若,求的值.20(12分)已知函数.(1)若关于的不等式的解集不是空集,求的取值范围;(2)设的最小值为,若正实数,满足.证明:.21(12分)对一批产品的内径进行抽查,已知被抽查的产品的数量为200,所得内径大小统计如表所示:()以频率估计概率,若从所有的这批产品中随机抽取3个,记内径在的产品个数为X,X的分布列及数学期望;()已知被抽查的产品是由甲、乙两类机器生产,根据如下表所示的相关统计数据,是否有的把握认为生产产品
6、的机器种类与产品的内径大小具有相关性参考公式:,(其中为样本容量)0.0500.0100.001k3.8416.63510.82822(10分)已知正整数,.(1)若的展开式中,各项系数之和比二项式系数之和大992,求的值;(2)若,且是中的最大值,求的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据三视图得到原图是,边长为2的正方体,挖掉八分之一的球,以正方体其中一个顶点为球的球心。【详解】根据三视图得到原图是,边长为2的正方体,挖掉八分之一的球,以正方体其中一个顶点为球的球心,故剩余的体积为: 故答案为:B
7、.【点睛】思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.2、C【解析】利用古典概型概率公式计算出和,然后利用条件概率公式可计算出结果。【详解】事件前两次取到的都是一等品,由古典概型的概率公式得,由古典概型的概率公式得,由条件概率公式得,故
8、选:C.【点睛】本题考查条件概率公式求概率,解题时要弄清楚各事件之间的关系,关键在于灵活利用条件概率公式计算,考查运算求解能力,属于中等题。3、C【解析】由(1+x)8a0+a1x+a2x2+a77x+a8x8,可得a0a81,a2a628,a41即可得集合有7个元素,利用函数定义可得从M到N的函数个数【详解】解:由,可得,共7个元素,则从M到N的函数个数是故选:C【点睛】本题主要考查二项式定理的应用,及函数定义,属于中档题4、C【解析】分别将各点化为直角坐标即可判断【详解】P(2,)化直角坐标为,即为 同理化直角坐标分别为 则与点P重合的点有3个故选:C【点睛】本题考查了极坐标与直角坐标互化
9、公式,考查了推理能力与计算能力,属于中档题5、B【解析】由于射击一次命中目标的概率为,所以关键先求出射击7次有4次命中且恰有3次连续命中的所有可能数,即根据独立事件概率公式得结果.【详解】因为射击7次有4次命中且恰有3次连续命中有种情况,所以所求概率为.选B.【点睛】本题考查排列组合以及独立事件概率公式,考查基本分析求解能力,属中档题.6、B【解析】利用直角坐标与极坐标的互化公式,即可得到答案【详解】由曲线的极坐标方程,两边同乘,可得,再由,可得:,所以曲线的极坐标方程化为直角坐标为故答案选B【点睛】本题考查把极坐标转化为直角坐标方程的方法,熟练掌握直角坐标与极坐标的互化公式是解题的关键,属于
10、基础题7、D【解析】先计算没有被击中的概率,再用1减去此概率得到答案.【详解】.故选:.【点睛】本题考查了概率的计算,先计算没有被击中的概率是解题的关键.8、A【解析】由题求得OP的坐标,求得OP,结合4x+2y+z=4可得答案.【详解】 =x+y,y,z ,OP利用柯西不等式可得42OP故选A.【点睛】本题考查空间向量的线性坐标运算及空间向量向量模的求法,属基础题.9、A【解析】试题分析:,又点在第一象限,点的极坐标为.故A正确.考点:1直角坐标与极坐标间的互化.【易错点睛】本题主要考查直角坐标与极坐标间的互化,属容易题. 根据公式可将直角坐标与极坐标间互化,当根据求时一定要参考点所在象限,
11、否则容易出现错误.10、C【解析】,函数f(x)在(0,+)上单调递增,f(3)=ln3-10,f(e)=lne-=1-0,f(3)f(e)0,在区间(e,3)内函数f(x)存在零点.故选C.11、C【解析】将2x+3y+1【详解】2当x=3,y=0或x=-1,y=2是等号成立.故答案选C【点睛】本题考查了绝对值三角不等式,将2x+3y+112、C【解析】试题分析:设4门课程分别为1,2,3,4,甲选修2门,可有1,2;1,3;1,4;2,3;2,4;3,4共6种情况,同理乙,丙均可有1,2,3;1,2,4;2,3,4;1,3,4共4种情况,不同的选修方案共有644=96种,故选C考点:分步计
12、数原理点评:本题需注意方案不分次序,即a,b和b,a是同一种方案,用列举法找到相应的组合即可二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求导函数,确定曲线在处的切线斜率,从而可求切线方程【详解】求导函数可得y,当时,y,曲线在点 处的切线方程为 即答案为【点睛】本题考查导数的几何意义,考查切线方程,属于基础题14、【解析】将这两式中的量全部用表示出来,正好有两个方程,两个未知数,解方程组即可求出。【详解】相当于,相当于,上面两式相除得代入就得,【点睛】基本量法是解决数列计算题最重要的方法,即将条件全部用首项和公比表示,列方程,解方程即可求得。15、18【解析】根据题意可知模型
13、的体积为四棱锥体积与四棱锥体积之差进而求得模型的体积,再求出模型的质量.【详解】由题意得, ,四棱锥OEFG的高3cm, 又长方体的体积为,所以该模型体积为,其质量为【点睛】本题考查几何体的体积问题,理解题中信息联系几何体的体积和质量关系,从而利用公式求解16、5【解析】试题分析:随机变量的取值有1、2、3、4,分布列为:1234由概率的基本性质知:考点:1、离散型随机变量的分布列三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或;(2)【解析】(1)当时表示出,再利用分类讨论和不等式解法求得的解集;(2)由题意,时,恒成立,由的范围去绝对值,即可求出的取值范围.【详
14、解】(1)当时,即,当时,有,解得;当时,有,不等式无解;当时,有,解得;综上,的解集为或;(2)由题意,的解集包含,即时,恒成立,因为,所以,时,的最大值为,即,解得,又,所以.【点睛】本题主要考查绝对值不等式的解法,考查学生分析转化能力和计算能力,属于中档题.18、(1)见解析;(2);(2)【解析】(1)根据三视图可知几何体的下部分是正方体,上部分是正四棱锥,画出几何体;(2)根据(1)所画的几何体,几何体的表面积包含5个正方形和4个三角形的面积;(3)根据数形结合,先画出展开图的平面图形,最短距离就是,根据余弦定理求边长.【详解】(1)(2)正视图中等腰三角形的直角边是几何体正四棱锥的
15、斜高,(3)一个三角形和下面的正方形的的展开图,如图所示,当时,设,,而 , ,根据数形结合可知最短距离就是 , ,【点睛】本题考查根据三视图求几何体的直观图,以及计算表面积,意在考查空间想象能力和计算求解能力,本题第二问需注意三视图中等腰三角形的腰是正四棱锥的斜高,等腰三角形斜边上的高是锥体的高,求解表面积时需注意这点.19、(1);(2)4.【解析】(1)运用等差数列的性质求得公差d,再由及d求得通项公式即可(2)利用前n项和公式直接求解即可.【详解】(1)设数列的公差为,故.(2),解得或(舍去),.【点睛】本题考查等差数列的通项公式及项数的求法,考查了前n项和公式的应用,是基础题,解题
16、时要认真审题,注意等差数列的性质的合理运用20、(1)或.(2)见解析【解析】(1)等式的不是空集,等价于的最小值,解得答案(2)由(1)知,再利用两次均值不等式得到答案.【详解】(1)不等式的不是空集,等价于的最小值.,可知,所以,解得:或.(2)由(1)可知的最小值为,所以,正实数,由均值不等式可知:,又因为.【点睛】本题考查了解绝对值不等式,均值不等式,意在考查学生的综合应用能力.21、()分布列见解析,;()没有.【解析】()由频率分布表可知,任取1件产品,内径在26,28)的概率,所以,根据二项分布的计算公式分别求出时的概率,列出分布列,再根据期望公式求出期望;()首先依题意填写列联表,再求得的观测值,结合临界值表即可得出结论。【详解】(I)任取1件产品,内径在26,28)的概率,故,故X的分布列为:X0123P故;(II)依题意,所得列联表如下所示内径小于28mm内径不小于28mm总计甲机器生产6832100乙机器生产6040100总计12872200的观测值为,故没有99%的把握认为生产产品的机器种类与产品的内径大小具有相关性。【点睛】本题主要考查离散型随机变量的分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年企业文化展示系统项目投资申请报告代可行性研究报告
- 2024年矿业测量仪器项目资金申请报告代可行性研究报告
- 新冠肺炎的护理查房
- 盆景项目可行性研究报告
- 年产xx家居节能项目可行性研究报告(项目说明)
- 高三一轮复习课件 自然地理之地质灾害
- 5.1植被课件高中地理人教版(2019)必修一
- 大班下学期语言教案:月亮姑娘做衣裳
- 舌系带护理诊断及措施
- 纪律教育活动启动会
- 新版RoHS环保知识培训教学内容
- 2025届炎德英才大联考物理高二上期末学业水平测试试题含解析
- 2024年执业药师资格继续教育定期考试题库附含答案
- 蚯蚓与土壤肥力提升2024年课件
- 店铺管理运营协议合同范本
- 天津市和平区2024-2025学年高一上学期11月期中英语试题(含答案含听力原文无音频)
- 2024年全国烟花爆竹储存作业安全考试题库(含答案)
- 2024年高中化学教师资格考试面试试题与参考答案
- DB11-T 2315-2024消防安全标识及管理规范
- 全科医生转岗培训结业考核模拟考试试题
- 吃动平衡健康体重 课件 2024-2025学年人教版(2024)初中体育与健康七年级全一册
评论
0/150
提交评论