版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1把圆x2+(y-2)A线段B等边三角形C直角三角形D四边形2在的展开式中,含的项的系数是()A-10B5C10D-53若复数在复平面内对应的点位于( )A第一象限B第二象限C第三象限
2、D第四象限4椭圆的左焦点为,若关于直线的对称点是椭圆上的点,则椭圆的离心率为( )ABCD5将名教师,名学生分成个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由名教师和名学生组成,不同的安排方案共有( )A种B种C种D种6生活中有这样一个实际问题:如果一杯糖水不够甜,可以选择加糖的方式,使得糖水变得更甜若,则下列数学模型中最能刻画“糖水变得更甜”的是()ABCD7运用祖暅原理计算球的体积时,构造一个底面半径和高都与球半径相等的圆柱,与半球(如图一)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥(如图二),用任何一个平行与底面的平面去截它们时,可证得
3、所截得的两个截面面积相等,由此证明该几何体与半球体积相等.现将椭圆绕轴旋转一周后得一橄榄状的几何体(如图三),类比上述方法,运用祖暅原理可求得其体积等于( )ABCD8设为可导函数,且满足,则曲线在点处的切线斜率为( )ABC2D9某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是ABCD10设,则ABCD11在等差数列中,是函数的两个零点,则的前10项和等于( )AB15C30D12在中,已知,为线段上的一点,且,则的最小值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分
4、。13若一个球的体积为,则该球的表面积为_14设等差数列的前项和为,则取得最小值的值为_15已知为实数,若复数是纯虚数,则_16设函数,若,则的取值范围是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)随着智能手机的普及,网络搜题软件走进了生活,有教育工作者认为,网搜答案可以起到帮助人们学习的作用,但对多数学生来讲,过度网搜答案容易养成依赖心理,对学习能力造成损害.为了了解学生网搜答案的情况,某学校对学生一月内进行网搜答案的次数进行了问卷调查,并从参与调查的学生中抽取了男、女生各100人进行抽样分析,制成如下频率分布直方图:记事件“男生1月内网搜答案次数不高于3
5、0次”为,根据频率分布直方图得到的估计值为0.65(1)求的值;(2)若一学生在1月内网搜答案次数超过50次,则称该学生为“依赖型”,现从样本内的“依赖型”学生中,抽取3人谈话,求抽取的女生人数X的分布列和数学期望.18(12分)已知直线过点M(3,3),圆()求圆C的圆心坐标及直线截圆C弦长最长时直线的方程;()若过点M直线与圆C恒有公共点,求实数m的取值范围19(12分)已知函数(1)当时,求的单调区间;(2)若对于在定义域内的任意,都有,求的取值范围20(12分)已知函数,数列的前项和为,且满足(1)求的值;(2)猜想数列的通项公式,并用数学归纳法加以证明21(12分)在各项均为正数的数
6、列中,且.(1)当时,求的值;(2)求证:当时,.22(10分)已知的展开式中第五项的系数与第三项的系数之比是.求:(1)展开式中各项系数的和;(2)展开式中系数最大的项.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】通过联立方程直接求得交点坐标,从而判断图形形状.【详解】联立x2+(y-2)2=1与x2【点睛】本题主要考查圆与椭圆的交点问题,难度不大.2、A【解析】根据,把按二项式定理展开,可得含的项的系数,得到答案【详解】由题意,在的展开中为,所以含的项的系数, 故选A【点睛】本题主要考查了二项式定理的应用,二项
7、展开式的通项公式,二项式系数的性质,着重考查了推理与运算能力,属于基础题3、C【解析】分析:根据复数的乘法运算进行化简,然后根据复数的几何意义,即可得到结论详解:z=(8+i)i=8i+i2=18i,对应的点的坐标为(1,8),位于第三象限,故选C点睛:本题主要考查复数的几何意义,利用复数的运算先化简是解决本题的关键,属于基础题4、A【解析】利用点关于直线的对称点,且A在椭圆上,得,即得椭圆C的离心率;【详解】点关于直线的对称点A为,且A在椭圆上,即,椭圆C的离心率故选A【点睛】本题主要考查椭圆的离心率,属于基础题5、A【解析】试题分析:第一步,为甲地选一名老师,有种选法;第二步,为甲地选两个
8、学生,有种选法;第三步,为乙地选名教师和名学生,有种选法,故不同的安排方案共有种,故选A考点:排列组合的应用6、B【解析】由题意可得糖水甜可用浓度体现,设糖的量为,糖水的量设为,添加糖的量为,对照选项,即可得到结论【详解】由题意,若,设糖的量为,糖水的量设为,添加糖的量为,选项A,C不能说明糖水变得更甜,糖水甜可用浓度体现,而,能体现糖水变甜;选项D等价于,不成立,故选:B【点睛】本题主要考查了不等式在实际生活中的运用,考查不等式的等价变形,着重考查了推理与运算能力,属于基础题7、C【解析】根据椭圆方程,构造一个底面半径为2,高为3的圆柱,通过计算可知高相等时截面面积相等,因而由祖暅原理可得橄
9、榄球几何体的体积的一半等于圆柱的体积减去圆锥的体积.【详解】由椭圆方程,构造一个底面半径为2,高为3的圆柱在圆柱中挖去一个以圆柱下底面圆心为顶点、上底面为底面的圆锥当截面与底面距离为时,截圆锥得到的截面小圆半径为 则,即所以截面面积为把代入椭圆方程,可求得所以橄榄球形状几何体的截面面积为由祖暅原理可得橄榄球几何体的体积为故选:C【点睛】本题考查了类比推理的综合应用,空间几何体体积的求法,属于中档题.8、D【解析】由导数的几何意义,结合题设,找到倍数关系,即得解.【详解】由导数的几何意义,可知:故选:D【点睛】本题考查了导数的几何意义和导数的定义,考查了学生概念理解,转化划归,数学运算的能力,属
10、于基础题.9、B【解析】试题分析:由题意,这是几何概型问题,班车每30分钟发出一辆,到达发车站的时间总长度为40,等车不超过10分钟的时间长度为20,故所求概率为,选B.【考点】几何概型【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度有长度、面积、体积等.10、C【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,然后求解复数的模.详解:,则,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法
11、,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.11、B【解析】由题意得是方程的两根,选B12、C【解析】分析:ABC中设AB=c,BC=a,AC=b,由sinB=cosAsinC结合三角形的内角和及和角的正弦公式化简可求 cosC=0 即C=90,再由,SABC=6可得bccosA=9,可求得c=5,b=3,a=4,考虑建立以AC所在的直线为x轴,以BC所在的直线为y轴建立直角坐标系,由P为线段AB上的一点,则存在实数使得=(3,44)(01),设则,由=(x,0)+(0,y)=(x,y)可得x=3,y=44则4x+3y=12而,利用基本不等式求解最小值详解:ABC
12、中设AB=c,BC=a,AC=bsinB=cosAsinC,sin(A+C)=sinCcosA,即sinAcosC+sinCcosA=sinCcosA,sinAcosC=0,sinA0,cosC=0 C=90,SABC=6bccosA=9,根据直角三角形可得sinA=,cosA=,bc=15c=5,b=3,a=4以AC所在的直线为x轴,以BC所在的直线为y轴建立直角坐标系可得C(0,0)A(3,0)B(0,4)P为线段AB上的一点,则存在实数使得=(3,44)(01)设,则,=(x,0)+(0,y)=(x,y)x=3,y=44则4x+3y=12=故所求的最小值为故选C点睛:本题是一道构思非常巧
13、妙的试题,综合考查了三角形的内角和定理、两角和的正弦公式及基本不等式求解最值问题,解题的关键是理解把已知所给的是一个单位向量,从而可用x,y表示,建立x,y与的关系,解决本题的第二个关键点在于由x=3,y=44发现4x+3y=12为定值,从而考虑利用基本不等式求解最小值二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意,根据球的体积公式,则,解得,又根据球的表面积公式,所以该球的表面积为.14、2【解析】求出数列的首项和公差,求出的表达式,然后利用基本不等式求出的最小值并求出等号成立时的值,于此可得出答案【详解】设等等差数列的公差为,则,解得,所以,所以,等号成立,当且仅当时
14、,等号成立,但,由双勾函数的单调性可知,当或时,取最小值,当时,;当时,因此,当时,取最小值,故答案为【点睛】本题考查等差数列的求和公式,考查基本不等式与双勾函数求最值,利用基本不等式要注意“一正、二定、三相等”这三个条件,在等号不成立时,则应考查双勾函数的单调性求解,考查分析能力与计算能力,属于中等题15、-3【解析】利用复数的除法、乘法运算整理可得:,利用复数是纯虚数列方程可得:,问题得解【详解】若复数是纯虚数,则解得:故填:【点睛】本题主要考查了复数的乘法、除法运算,还考查了纯虚数的概念及方程思想,属于基础题16、【解析】分析:,即,再分类讨论求得的范围,综合可得结论详解:函数函数 ,由
15、,可得,其中,下面对进行分类讨论,时, ,可以解得 时, ,可以解得 综上, 即答案为.点睛:本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)详见解析【解析】(1)根据的估计值计算出的值,然后根据频率和为计算出的值;(2)先计算出男、女“依赖型”人数,然后根据超几何分布的概率计算去求解X的分布列和数学期望.【详解】解:(1)由已知得,所以,又因为,所以;(2)样本中男生“依赖型”人数为,女生“依赖型”人数为,的所有可能取值为.的分布列为0123【点睛】本题考查频率分布直方图的理解以及离散
16、型随机变量的均值,难度一般.根据频率分布直方图去求解相应值的时候,注意隐含条件:频率和为;书写分布列的时候注意检验一下概率和是否为.18、()(0,-2),;().【解析】()利用直径为最长弦;()利用点与圆的位置关系【详解】()圆C方程标准化为:圆心C的坐标为(0,2)直线截圆C弦长最长,即过圆心,故此时的方程为:,整理得:;()若过点M的直线与圆C恒有公共点,则点M在圆上或圆内,得【点睛】此题考查了直线与圆,点与圆的位置关系,属于基础题.19、(1)单调递减区间为,单调递增区间为;(2).【解析】(1)将代入函数的解析式,求出该函数的定义域,求出导数,在定义域内分别解出不等式和,可得出函数
17、的单调减区间和增区间;(2)由,利用参变量分离得,构造函数,将问题转化为,然后利用导数求出函数的最大值,可得出实数的取值范围.【详解】(1)当时,函数的定义域为,当时,当时,所以,函数的单调递减区间为,单调递增区间为;(2)由,得,构造函数,则.,令,得.当时,;当时,.所以,函数在处取得极大值,亦即最大值,即.,因此,实数的取值范围是.【点睛】本题考查利用导数求函数的单调区间,以及利用导数研究不等式恒成立问题,常用分类讨论法与参变量分离法,转化为函数的最值来求解,考查化归与转化数学思想,属于中等题.20、(1)(2)猜想见解析【解析】(1)先求得的值,然后根据已知条件求得,由此求得的值.(2
18、)由(1)猜想数列的通项公式为,然后利用数学归纳法进行证明.【详解】(1)由,即,所以,由得,得当时,;当时,;当时,(2)由(1)猜想下面用数学归纳法证明:当时,由(1)可知猜想成立;假设时猜想成立,即,此时,当时,整理得,所以当时猜想成立综上所述,对任意成立【点睛】本小题主要考查根据递推关系式求数列某些项的值,考查数学归纳法求数列的通项公式,属于中档题.21、 (1) ;(2)证明见解析.【解析】(1)推导出,解得,从而,由此能求出的值;(2)利用分析法,只需证,只需证,只需证,根据基本不等式即可得到结果【详解】(1) ,解得,同理解得 即; (2) 要证 时,只需证,只需证,只需证,只需证,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年企业文化展示系统项目投资申请报告代可行性研究报告
- 2024年矿业测量仪器项目资金申请报告代可行性研究报告
- 新冠肺炎的护理查房
- 盆景项目可行性研究报告
- 年产xx家居节能项目可行性研究报告(项目说明)
- 高三一轮复习课件 自然地理之地质灾害
- 5.1植被课件高中地理人教版(2019)必修一
- 大班下学期语言教案:月亮姑娘做衣裳
- 舌系带护理诊断及措施
- 纪律教育活动启动会
- 新版RoHS环保知识培训教学内容
- 2025届炎德英才大联考物理高二上期末学业水平测试试题含解析
- 2024年执业药师资格继续教育定期考试题库附含答案
- 蚯蚓与土壤肥力提升2024年课件
- 店铺管理运营协议合同范本
- 天津市和平区2024-2025学年高一上学期11月期中英语试题(含答案含听力原文无音频)
- 2024年全国烟花爆竹储存作业安全考试题库(含答案)
- 2024年高中化学教师资格考试面试试题与参考答案
- DB11-T 2315-2024消防安全标识及管理规范
- 全科医生转岗培训结业考核模拟考试试题
- 吃动平衡健康体重 课件 2024-2025学年人教版(2024)初中体育与健康七年级全一册
评论
0/150
提交评论