版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知,将函数的图象向左平移个单位,得到的图象关于轴对称,则为( )ABCD2已知函数若g(x)存在2个零点,则a的取值范围是A1,0)B0,+)C1,+)D1,+)3复数
2、(是虚数单位)的虚部是()A.B.C.D.4若某几何体的三视图如右图所示,则该几何体的体积等于( )A10B20C30D605集合,若,则的值为( )ABCD6执行如图所示的程序框图,若输入的值为,则输出的值为( )ABCD7已知两变量x和y的一组观测值如下表所示:x234y546如果两变量线性相关,且线性回归方程为,则()ABCD8小明跟父母、爷爷奶奶一同参加中国诗词大会的现场录制,5人坐成一排.若小明的父母都不与他相邻,则不同坐法的总数为( )A12B36C84D969对于椭圆,若点满足,则称该点在椭圆内,在平面直角坐标系中,若点A在过点的任意椭圆内或椭圆上,则满足条件的点A构成的图形为(
3、 )A三角形及其内部B矩形及其内部C圆及其内部D椭圆及其内部10函数的单调递减区间是( )ABC,D,11从一个装有3个白球,3个红球和3个蓝球的袋中随机抓取3个球,记事件为“抓取的球中存在两个球同色”,事件为“抓取的球中有红色但不全是红色”,则在事件发生的条件下,事件发生的概率( )ABCD12已知曲线,给出下列命题:曲线关于轴对称;曲线关于轴对称;曲线关于原点对称;曲线关于直线对称;曲线关于直线对称,其中正确命题的个数是( )A1B2C3D4二、填空题:本题共4小题,每小题5分,共20分。13为等比数列,若,则_.14周长为的矩形,绕一条边旋转成一个圆柱,则圆柱体积的最大值为_.15已知为
4、抛物线上一个动点,定点,那么点到点的距离与点到抛物线的准线的距离之和的最小值是_16设随机变量的概率分布列如下图,则_1234三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费和年销售量(=1,2,8)数据作了初步处理,得到下面的散点图及一些统计量的值.46.65636.8289.81.61469108.8表中,=()根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可
5、,不必说明理由)()根据()的判断结果及表中数据,建立y关于x的回归方程;()已知这种产品的年利润z与x、y的关系为z=0.2y-x.根据()的结果回答下列问题:()年宣传费x=49时,年销售量及年利润的预报值是多少?()年宣传费x为何值时,年利润的预报值最大?附:对于一组数据,,,其回归线的斜率和截距的最小二乘估计分别为:18(12分)选修4-5:不等式选讲已知函数.()当时,求函数的定义域;()若关于的不等式的解集是,求的取值范围.19(12分)某运输公司有名驾驶员和名工人,有辆载重量为吨的甲型卡车和辆载重量为吨的乙型卡车.某天需运往地至少吨的货物,派用的车需满载且只运送一次.派用的每辆甲
6、型卡车需配名工人,运送一次可得利润元:派用的每辆乙型卡车需配名工人,运送一次可得利润元,该公司合理计划当天派用两类卡车的车辆数,可得的最大利润多少?20(12分)某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益(单位:万元)绘制成如图所示的频率分布直方图.由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的.广告投入/万元12345销售收益/万元23257()根据频率分布直方图计算图中各小长方形的宽度;()该公司按照类似的研究方法,测得另外一些数据,并整理得到上表:表中的数据显示与之间存在线性相关关系,求关于的回归方程;()若广告投入万元时,
7、实际销售收益为万元,求残差.附:,21(12分)已知,命題对任意,不等式恒成立;命题存在,使得成立.(1)若为真命题,求的取值范围;(2)若为假,为真,求的取值范围.22(10分)已知定义域为的函数是奇函数(1)求的值;(2)已知在定义域上为减函数,若对任意的,不等式为常数)恒成立,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由平移后,得,再由图象关于轴对称,得,解之即可.【详解】将函数的图象向左平移个单位,得图象关于轴对称,即又时满足要求.故选:D【点睛】本题考查了三角函数图象的平移和函数的对称性,
8、属于中档题.2、C【解析】分析:首先根据g(x)存在2个零点,得到方程有两个解,将其转化为有两个解,即直线与曲线有两个交点,根据题中所给的函数解析式,画出函数的图像(将去掉),再画出直线,并将其上下移动,从图中可以发现,当时,满足与曲线有两个交点,从而求得结果.详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点
9、个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.3、C【解析】试题分析:,虚部为。考点:复数的运算。4、B【解析】分析:根据三视图得到原图,再由椎体的体积公式得到结果.详解:由三视图得到原图是,底面为直角三角形,高为5的直棱柱,沿面对角线切去一个三棱锥后剩下的部分体积为: 故答案为B.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是
10、几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.5、D【解析】因为,所以,选D.6、C【解析】读懂流程图,可知每循环一次,的值减少4,当时,得到的值.【详解】根据流程图,可知每循环一次,的值减少4,输入,因为2019除以4余3,经过多次循环后,再经过一次循环后满足的条件,输出【点睛】流程图的简单问题,找到循环规律,得到的值,得到输出值.属于简单题.7、D【解析】先计算3,5,代入方程即可【详解】3,5,代入线性回归方程可得53,解之得
11、.故选D【点睛】线性回归直线必过样本中心8、B【解析】记事件A:小明的父亲与小明相邻,事件B:小明的母亲与小明相邻,利用捆绑法计算出事件A、事件B、事件AB的排法种数nA、nB、nAB【详解】记事件A:小明的父亲与小明相邻,事件B:小明的母亲与小明相邻,对于事件A,将小明与其父亲捆绑,形成一个元素,与其他四个元素进行排序,则nA=A对于事件AB,将小明父母与小明三人进行捆绑,其中小明居于中间,形成一个元素,与其他两个元素进行排序,则nAB=A2【点睛】本题考查排列组合综合问题,考查捆绑法以及容斥原理的应用,解题时要合理利用分类讨论思想与总体淘汰法,考查逻辑推理能力,属于中等题。9、B【解析】由
12、在椭圆上,根据椭圆的对称性,则关于坐标轴和原点的对称点都在椭圆上,即可得结论【详解】设在过的任意椭圆内或椭圆上,则,即,由椭圆对称性知,都在任意椭圆上,满足条件的点在矩形上及其内部,故选:B【点睛】本题考查点到椭圆的位置关系考查椭圆的对称性由点在椭圆上,则也在椭圆上,这样过点的所有椭圆的公共部分就是矩形及其内部10、A【解析】函数的单调减区间就是函数的导数小于零的区间,可以求出函数的定义域,再算出函数的导数,最后解不等式,可得出函数的单调减区间【详解】解:因为函数,所以函数的定义域为,求出函数的导数:,;令,解得,所以函数的单调减区间为故选:【点睛】本题考查了利用导数研究函数的单调性,属于简单
13、题,在做题时应该避免忽略函数的定义域而导致的错误11、C【解析】根据题意,求出和,由公式即可求出解答.【详解】解:因为事件为“抓取的球中存在两个球同色”包括两个同色和三个同色,所以 事件发生且事件发生概率为: 故.故选:C.【点睛】本题考查条件概率求法,属于中档题.12、C【解析】根据定义或取特殊值对曲线的对称性进行验证,可得出题中正确命题的个数.【详解】在曲线上任取一点,该点关于轴的对称点的坐标为,且,则曲线关于轴对称,命题正确;点关于轴的对称点的坐标为,且,则曲线关于轴对称,命题正确;点关于原点的对称点的坐标为,且,则曲线关于原点对称,命题正确;在曲线上取点,该点关于直线的对称点坐标为,由
14、于,则曲线不关于直线对称,命题错误;在曲线上取点,该点关于直线的对称点的坐标为,由于,则曲线不关于直线对称,命题错误.综上所述,正确命题的个数为.故选:C.【点睛】本题考查曲线对称性的判定,一般利用对称性的定义以及特殊值法进行判断,考查推理能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】将这两式中的量全部用表示出来,正好有两个方程,两个未知数,解方程组即可求出。【详解】相当于,相当于,上面两式相除得代入就得,【点睛】基本量法是解决数列计算题最重要的方法,即将条件全部用首项和公比表示,列方程,解方程即可求得。14、【解析】设矩形的一边长为 ,则另一边长为 ,再利用
15、圆柱的体积公式求得体积的解析式,然后利用基本不等式可求得最大值.【详解】设矩形的一边长为 ,则另一边长为 ,则圆柱的体积=,当且仅当,即时等号成立.故答案为: .【点睛】本题考查了圆柱的体积公式和基本不等式,属中档题.15、【解析】 由抛物线的焦点为, 根据抛物线的定义可知点到准线的距离等于点的焦点的距离, 设点到抛物线的准线的距离为,所以, 可得当三点共线时,点到点的距离与点到准线的距离之和最小, 所以最小值为. 点睛:本题主要考查了抛物线的定义及其标准方程的应用,解答中把抛物线上的点到准线的距离转化为到抛物线的焦点的距离是解答的关键,这是解答抛物线最值问题的一种常见转化手段,着重考查了学生
16、的转化与化归和数形结合思想的应用.16、【解析】依题意可知,根据分布列计算可得;【详解】解:依题意可得故答案为:【点睛】本题考查离散型随机变量的分布列与和概率公式的应用,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、();();()();()46.24【解析】()由散点图可以判断,适合作为年销售关于年宣传费用的回归方程类型.()令,先建立关于的线性回归方程,由于=,=563-686.8=100.6.关于的线性回归方程为,关于的回归方程为.()()由()知,当=49时,年销售量的预报值=576.6,.()根据()的结果知,年利润z的预报值,当=,即时,取得最大值
17、.故宣传费用为46.24千元时,年利润的预报值最大. 18、(1)或(2).【解析】试题分析:(1)函数去绝对值号化为分段函数即可求解;(2)分离参数得:在上恒成立,利用绝对值性质即可得到m范围内.试题解析:(1)由题意,令解得或,函数的定义域为或(2),即.由题意,不等式的解集是,则在上恒成立.而,故.点睛:恒成立问题是常见数学问题,一般可考虑分离参数处理,分离参数后问题转化为求最值,可考虑均值不等式、函数最值,绝对值的性质、三角函数等方法来处理.19、安排辆甲型车,辆乙型车利润最大,最大利润元.【解析】设甲型车辆,乙型车辆,根据题意列不等式组,画可行域,将目标函数化为斜截式,比较斜率,找到
18、最优解,解方程组得最优解的坐标,代入目标函数即可得到.【详解】解:设甲型车辆,乙型车辆,则,即设利润为,则,化成斜截式可得,因为,由图可知,在点处取得最大值,联立解得,,所以的最大值为,所以,安排辆甲型车,辆乙型车利润最大,最大利润元.【点睛】本题考查了线性规划求最大值,属于中档题.20、 (1).(2).(3).【解析】分析:()设各小长方形的宽度为,由频率直方图各小长方形的面积总和为,可得,从而可得结果;()利用平均数公式求出平均数、利用样本中心的 性质结合公司可求得回归系数,从而可写出线性回归方程;()计算当时,销售收益预测值,再求残差值.详解:()设各小长方形的宽度为,由频率直方图各小长方形的面积总和为,可知,故.()由题意,可知,根据公式,可求得,所以关于的回归方程为.()当时,销售收益预测值(万元),又实际销售收益为万元,所以残差点睛:求回归直线方程的步骤:确定两个变量具有线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 同意签订合同的纪要
- 《夏商周秦汉大事》课件
- 2025年海南货运从业资格证恢复考试题
- 2025年滨州货运资格证考试真题
- 2025年山东货运上岗证模拟考试0题
- 2025年江西货运从业资证孝试模似题库
- 2025年达州道路运输从业资格证考试模拟试题
- 治安院务公开管理办法
- 智能家居大白施工合同
- 航空航天木地板施工合同
- 出车前的安全检查
- 山东省烟台市2023-2024学年高一上学期期末考试 化学 含解析
- 2024落实意识形态责任清单及风险点台账
- 2024年度护士长工作总结
- 《篮球:原地持球交叉步突破》教案(三篇)
- 稀土新材料在新能源技术领域的应用
- 2024年无人驾驶航空植保技能大赛理论考试题库(含答案)
- 2024山东高速集团社会招聘189人高频难、易错点500题模拟试题附带答案详解
- 2024年人教部编本七年级上册教学比赛说课材料16《诫子书》说课稿
- PLC入门课程课件
- 2025年研究生考试考研法律硕士综合(非法学498)试卷及解答参考
评论
0/150
提交评论