版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知两个正态分布密度函数的图象如图所示,则( )ABCD2某校开设10门课程供学生选修,其中、三门由于上课时间相同,至多选一门,学校规定每位学生选修三门,则每位学生不同的
2、选修方案种数是( )A70B98C108D1203已知,直线过点,则的最小值为()A4B3C2D14某工厂生产甲、乙、丙三种型号的产品,产品数量之比为,现用分层抽样的方法抽出容量为的样本,其中甲种产品有18件,则样本容量()A70B90C40D605已知函数,则( )ABeCD16在二项式的展开式中,其常数项是15.如下图所示,阴影部分是由曲线和圆及轴围成的封闭图形,则封闭图形的面积为( )ABCD7长方体中,是对角线上一点,是底面上一点,若,则的最小值为( )ABCD8 “读整本的书”是叶圣陶语文教育思想的重要组成部分,整本书阅读能够扩大阅读空间。某小学四年级以上在开学初开展“整本书阅读活动
3、”,其中四年班老师号召本班学生阅读唐诗三百首并背诵古诗,活动开展一个月后,老师抽四名同学(四名同学编号为)了解能够背诵古诗多少情况,四名同学分别对老师做了以下回复:说:“比背的少”;说:“比背的多”;说:“我比背的多; 说:“比背的多”.经过老师测验发现,四名同学能够背诵古诗数各不相同,四名同学只有一个说的正确,而且是背诵的最少的一个.四名同学的编号按能够背诵数量由多到少组成的四位数是( )ABCD9设函数 是奇函数的导函数,当时,则使得成立的的取值范围是( )ABCD10已知函数对任意的满足(其中是函数的导函数),则下列不等式成立的是( )ABCD11已知,函数,若在上是单调减函数,则的取值
4、范围是( )ABCD12复数,则的共轭复数在复平面内对应点在( )A第一象限B第二象限C第三象限D第四象限二、填空题:本题共4小题,每小题5分,共20分。13的展开式中,项的系数为_.(用数字作答)14设为的展开式中含项的系数,为的展开式中二项式系数的和,则能使成立的的最大值是_15在上随机地取一个数,则事件“直线与圆相交”发生的概率为_16已知向量满足:,当取最大值时, _三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)(本小题满分10分)选修4-1:几何证明选讲如图,四边形ABCD是O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE(1)证明:D=
5、E;(2)设AD不是O的直径,AD的中点为M,且MB=MC,证明:ADE为等边三角形18(12分)在四棱锥中,四边形是平行四边形,且,(1)求异面直线与所成角的余弦值;(2)若,二面角的平面角的余弦值为,求的正弦值19(12分)已知公差不为零的等差数列满足,且,成等比数列.(1)求数列的通项公式;(2)若,且数列的前项和为,求证:.20(12分)已知复数为虚数单位.(1)若复数 对应的点在第四象限,求实数的取值范围;(2)若,求的共轭复数.21(12分)在中,三个内角的对边分别为(1)若是的等差中项,是的等比中项,求证:为等边三角形;(2)若为锐角三角形,求证:22(10分)已知函数的定义域为
6、;(1)求实数的取值范围;(2)设实数为的最大值,若实数,满足,求的最小值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】正态曲线关于 对称,且 越大图象越靠近右边,第一个曲线的均值比第二个图象的均值小,又有 越小图象越瘦高,得到正确的结果【详解】正态曲线是关于对称,且在处取得峰值,由图易得,故的图象更“瘦高”,的图象更“矮胖”,则.故选A.【点睛】本题考查正态分布曲线的特点及曲线所表示的意义,考查密度函数中两个特征数均值和标准差对曲线的位置和形状的影响,是一个基础题2、B【解析】根据题意,分2种情况讨论:、从A,B
7、,C三门中选出1门,其余7门中选出2门,有种选法,、从除A,B,C三门之外的7门中选出3门,有种选法;故不同的选法有63+35=98种;故选:B.点睛:(1)解排列组合问题要遵循两个原则:按元素(或位置)的性质进行分类;按事情发生的过程进行分步具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置)(2)不同元素的分配问题,往往是先分组再分配在分组时,通常有三种类型:不均匀分组;均匀分组;部分均匀分组注意各种分组类型中,不同分组方法的求解3、A【解析】先得a+3b=1,再与相乘后,用基本不等式即可得出结果.【详解】依题意得,所以,当且仅当时取等号;
8、故选A【点睛】本题考查了基本不等式及其应用,熟记基本不等式即可,属于基础题4、B【解析】用除以甲的频率,由此求得样本容量.【详解】甲的频率为,故,故选B.【点睛】本小题主要考查分层抽样的知识,考查频率与样本容量的计算,属于基础题.5、C【解析】先求导,再计算出,再求.【详解】由题得,所以.故选:C.【点睛】本题主要考查导数的计算,意在考查学生对该知识的掌握水平和基本的计算能力,属基础题.6、B【解析】用二项式定理得到中间项系数,解得a,然后利用定积分求阴影部分的面积【详解】(x1+)6展开式中,由通项公式可得 ,令113r0,可得r4,即常数项为,可得15,解得a1曲线yx1和圆x1+y11的
9、在第一象限的交点为(1,1)所以阴影部分的面积为故选:B【点睛】本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题7、A【解析】将绕边旋转到的位置,使得平面和平面在同一平面内,则到平面的距离即为的最小值,利用勾股定理解出即可【详解】将绕边旋转到的位置,使得平面和平面在同一平面内,过点作平面,交于点,垂足为点,则为的最小值,故选A【点睛】本题考查空间距离的计算,将两折线段长度和的计算转化为同一平面上是解决最小值问题的一般思路,考查空间想象能力,属于中等题8、A【解析】分别假设四位同学是说正确的人,排除矛盾情况,推理得到答案【详解】假设1正确,其他都错误,则1最少,比背的少,比背的少
10、,3比4少,3比2少顺序为:4231假设2正确,其他错误,则2最少,根据1知:2比4多,矛盾,排除假设3正确,其他错误,则3最少,根据2知:1比3少,矛盾,排除假设4正确,其他错误,则4最少,根据3知:3比4少,矛盾,排除故答案选A【点睛】本题考查了逻辑推理,依次假设正确的人,根据矛盾排除选项是解题的关键.9、D【解析】分析:根据题意,设,对求导,利用导数与函数单调性的关系分析可得在上为减函数,分析的特殊值,结合函数的单调性分析可得在区间和上都有,结合函数的奇偶性可得在区间和上都有,进而将不等式变形转化可得或,解可得x的取值范围,即可得答案.详解:根据题意,设,其导数,又当时,则有,即函数在上
11、为减函数,又,则在区间上,又由,则,在区间上,又由,则,则在区间和上都有,又由为奇函数,则在区间和上都有,或,解可得:或.则x的取值范围是.故选:D.点睛:本题考查函数的导数与函数的单调性的关系,以及不等式的解法,关键是分析与的解集.10、D【解析】构造函数,利用函数导数判断函数的单调性,将代入函数,根据单调性选出正确的选项.【详解】构造函数,依题意,故函数在定义域上为增函数,由得,即,排除A选项. 由得,即,排除B选项.由得,即,排除C,选项. 由得,即,D选项正确,故选D.【点睛】本小题主要考查构造函数法比较大小,考查函数导数的概念,考查函数导数运算,属于基础题.11、C【解析】根据函数的
12、解析式,可求导函数,根据导函数与单调性的关系,可以得到;分离参数 ,根据所得函数的特征求出 的取值范围.【详解】因为所以 因为在上是单调减函数所以即所以 当时, 恒成立当 时, 令 ,可知双刀函数,在 上为增函数,所以 即所以选C【点睛】导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若 就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为 ,若恒成立;(3)若 恒成立,可转化为(需在同一处取得最值).12、A【解析】化简,写出共轭复数即可根据复平面的定义选出答案【详解】,在复平面内对应点为 故选A【点睛】本题考查复数,属于基础题二、填空题:
13、本题共4小题,每小题5分,共20分。13、-30【解析】由题意利用幂的意义,组合数公式,求得项的系数.【详解】,表示个因式的积,要得到含项,需个因式选,个因式选,其余的个因式选即可.展开式中,项的系数为.故答案为:-30【点睛】本题考查了二项式定理、组合数公式,需熟记公式,属于基础题.14、4【解析】由题意可得,An,若使得AnBn,即n(n+1)2n,可求.【详解】(1+x)n+1的展开式的通项为Tr+1,由题意可得,An,又为的展开式中二项式系数的和,AnBn,即n(n+1)2n当n1时,122,满足题意;当n2时,2322,满足题意;当n3时,3423,满足题意;当n4时,4524,满足
14、题意;当n5时,5625,不满足题意,且由于指数函数比二次函数增加的快,故当n5时,n(n+1)2n,4.故答案为4【点睛】本题主要考查了二项展开式的通项公式的应用,二项展开式的性质应用及不等式、指数函数与二次函数的增加速度的快慢的应用,属于中档题15、【解析】试题分析:直线y=kx与圆相交,需要满足圆心到直线的距离小于半径,即,解得,而,所以所求概率P=.【考点】直线与圆位置关系;几何概型【名师点睛】本题是高考常考知识内容,考查几何概型概率的计算.本题综合性较强,具有“无图考图”的显著特点,涉及点到直线距离的计算.本题能较好地考查考生分析问题、解决问题的能力及基本计算能力等.16、【解析】根
15、据向量模的性质可知当与反向时,取最大值,根据模长的比例关系可得,整理可求得结果.【详解】当且仅当与反向时取等号又 整理得: 本题正确结果:【点睛】本题考查向量模长的运算性质,关键是能够确定模长取得最大值时,两个向量之间的关系,从而得到两个向量之间的关系.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析.【解析】试题分析:(1)由四点共圆性质可得D=CBE.再结合条件CBE=E,得证(2)由等腰三角形性质得OMAD,即得ADBC, 因此A=CBE=E.而D=E,所以ADE为等边三角形.试题解析:解: (1)由题设知A,B,C,D四点共圆,所以D=CB
16、E.由已知得CBE=E,故D=E.(2)设BC的中点为N,连结MN,则由MB=MC知MNBC,故O在直线MN上.又AD不是O的直径,M为AD的中点,故OMAD,即MNAD. 所以ADBC,故A=CBE.又CBE=E,故A=E.由(1)知,D=E,所以ADE为等边三角形.18、(1)0;(2).【解析】(1)首先设与的交点为,连接.根据已知及三角形全等的性质可证明面,即可得到异面直线与所成角的余弦值.(2)首先作于点,连接,易证,得到,即为二面角的一个平面角,再利用余弦定理即可得到的正弦值.【详解】(1)设与的交点为,连接.因为四边形是平行四边形,且,所以四边形是菱形.因为,所以,.又因为,及,
17、所以,即,面.故异面直线与夹角的余弦值为.(2)作于点,连接,因为,所以,所以,即为二面角的一个平面角,设,则,解得,.所以的正弦值为【点睛】本题第一问考查异面直线成角问题,第二问考查二面角的计算,属于中档题.19、 (1).(2)见详解.【解析】(1)设公差为,由已知条件列出方程组,解得,解得数列的通项公式.(2)得出,可由裂项相消法求出其前项和,进而可证结论.【详解】(1)设等差数列的公差为().由题意得则化简得解得所以.(2)证明:,所以.【点睛】本题考查等差数列和等比数列的基本量运算、裂项相消法求和、不等式的证明.通项公式形如的数列,可由裂项相消法求和.20、(1);(2)【解析】试题
18、分析:(1)求出复数的代数形式,根据第四象限的点的特征,求出的范围;(2)由已知得出 ,代入的值,求出 试题解析;(I)=, 由题意得 解得 (2) 21、(1)见解析(2)见解析【解析】(1)由是的等差中项可得,由是的等比中项,结合正弦定理与余弦定理即可得到,由此证明为等边三角形;(2)解法1:利用分析法,结合锐角三角形的性质即可证明;解法2:由为锐角三角形以及三角形的内角和为,可得,利用公式展开,进行化简即可得到【详解】(1)由成等差数列,有 因为为的内角,所以 由得 由是的等比中项和正弦定理得,是的等比中项, 所以 由余弦定理及,可得 再由,得即,因此 从而 由,得 所以为等边三角形 (2)解法1: 要证只需证 因为、都为锐角,所以, 故只需证:只需证: 即证: 因为,所以要证:即证: 即证: 因为为锐角,显然故原命题得证,即 解法2:因为为锐角,所以 因为 所以, 即 展开得: 所以 因为、都为锐角,所以, 所以 即【点睛】本题考查正余弦定理、等差等比的性质,锐角三角形的性质,熟练掌握定理是解决本题的关键22、(1);(2)【解析】(1)由定义域为R,只需
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度供应链管理服务合同标的与服务流程详细说明
- 2024年度碧桂园房地产销售代理合同
- 2024年度智能家居系统开发与技术服务合同2篇
- 2024年度废弃物料环保焚烧服务合同
- 2024年度广告发布合同:为期一年的高速公路广告牌租赁
- 2024年度供应链融资合同:某电商公司供应链融资2篇
- 2024年度企业产品品牌合作发展合同
- 安全用电施工协议书模板2
- 2024年度网站建设合同担保安排
- 2024年度电商企业合作研究合同
- 网络消费者行为分析高职PPT完整全套教学课件
- 儿科危重症的早期识别-危重症的早期识别课件
- 初中申请加入培优班申请书
- 检维修作业安全管理
- 隐蔽-植物-种植隐蔽工程检查验收记录
- petrel软件详细教程课件
- 新能源汽车技术高职PPT完整全套教学课件
- 医院人力资源管理测试题
- 首先打破一切常规:世界顶级管理者的成功秘诀
- 中班心理健康活动:《我的情绪小屋》
- 公司员工奖励制度
评论
0/150
提交评论