




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1为得到函数的图象,只需将函数图象上所有的点( )A横坐标缩短到原来的倍B横坐标伸长到原来的倍C横坐标缩短到原来的倍,再向右平移个单位D横坐标伸长到原来的倍,再向右平移个单
2、位2高三毕业时,甲,乙,丙等五位同学站成一排合影留念,在甲和乙相邻的条件下,丙和乙也相邻的概率为( )ABCD3给出下列三个命题:“若,则”为假命题;若为真命题,则,均为真命题;命题,则.其中正确的个数是( )A0B1C2D34定义在 上的函数满足下列两个条件:(1)对任意的 恒有 成立;(2)当 时, ;记函数 ,若函数恰有两个零点,则实数 的取值范围是( )ABCD5给出下列说法:(1)命题“,”的否定形式是“,”;(2)已知,则;(3)已知回归直线的斜率的估计值是2,样本点的中心为,则回归直线方程为;(4)对分类变量与的随机变量的观测值来说,越小,判断“与有关系”的把握越大;(5)若将一
3、组样本数据中的每个数据都加上同一个常数后,则样本的方差不变.其中正确说法的个数为( )A2B3C4D56在下列区间中,函数的零点所在的区间为( )ABCD7若,则()ABCD8已知的展开式中没有项,则的值可以是( )A5B6C7D89已知函数fxAfx的最小正周期为,最大值为Bfx的最小正周期为,最大值为Cfx的最小正周期为2Dfx的最小正周期为210某学校高三模拟考试中数学成绩服从正态分布,考生共有1000人,估计数学成绩在75分到86分之间的人数约为( )人参考数据:,)A261B341C477D68311已知直线y3x1与曲线yax+lnx相切,则实数a的值为()A1B2C3D412函数
4、y=x2x的单调递减区间为A(1,1B(0,1C1,+)D(0,+)二、填空题:本题共4小题,每小题5分,共20分。13在极坐标系中,圆上的点到直线的距离的最小值是 _14已知定义在R上的可导函数f(x)满足,若,则实数m的取值范围是_15若在区间上恒成立,则实数的取值范围是 _16设随机变量服从正态分布,且,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知的展开式前三项中的系数成等差数列(1)求的值和展开式系数的和;(2)求展开式中所有的有理项18(12分)某运输公司有名驾驶员和名工人,有辆载重量为吨的甲型卡车和辆载重量为吨的乙型卡车.某天需运往地至少吨的
5、货物,派用的车需满载且只运送一次.派用的每辆甲型卡车需配名工人,运送一次可得利润元:派用的每辆乙型卡车需配名工人,运送一次可得利润元,该公司合理计划当天派用两类卡车的车辆数,可得的最大利润多少?19(12分)高二某班名同学期末考完试后,商量购买一些学习参考书准备在高三时使用,大家约定:每个人通过掷一枚质地均匀的骰子决定自己去哪购买,掷出点数大于或等于的人去图书批发市场购买,掷出点数小于的人去网上购买,且参加者必须从图书批发市场和网上选择一家购买.(1)求这人中至多有人去图书批发市场购买的概率;(2)用、分别表示这人中去图书批发市场和网上购买的人数,记,求随机变量的分布列和数学期望.20(12分
6、)某隧道设计为双向四车道,车道总宽22米。要求通行车辆限高4.5米,隧道全长2.5千米,隧道的拱线近似地看成半个桶圆形状(如图)。(1)若最大拱高为6米,则隧道设计的拱宽是多少米?(2)若最大拱高不小于6米,则应如何设计拱高和拱宽,才能使半个椭圆形隧道的土方工程量最小,并求出最小土方量?(已知:椭圆的面积公式为,本题结果拱高和拱宽精确到0.01米,土方量精确到1米3)21(12分)我国2019年新年贺岁大片流浪地球自上映以来引发了社会的广泛关注,受到了观众的普遍好评.假设男性观众认为流浪地球好看的概率为,女性观众认为流浪地球好看的概率为,某机构就流浪地球是否好看的问题随机采访了4名观众(其中2
7、男2女).(1)求这4名观众中女性认为好看的人数比男性认为好看的人数多的概率;(2)设表示这4名观众中认为流浪地球好看的人数,求的分布列与数学期望.22(10分)已知函数为自然对数的底数)()求函数的单调区间;()若,证明:关于的不等式在上恒成立参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分析:先将三角函数化为同名函数然后根据三角函数伸缩规则即可.详解:由题可得:,故只需横坐标缩短到原来的倍即可得,故选A.点睛:考查三角函数的诱导公式,伸缩变换,对公式的正确运用是解题关键,属于中档题.2、B【解析】记事件甲乙相邻,
8、事件乙丙相邻,利用排列组合思想以及古典概型的概率公式计算出和,再利用条件概率公式可计算出所求事件的概率【详解】记事件甲乙相邻,事件乙丙相邻,则事件乙和甲丙都相邻,所求事件为,甲乙相邻,则将甲乙两人捆绑,与其他三位同学形成四个元素,排法种数为,由古典概型的概率公式可得.乙和甲丙都相邻,则将甲乙丙三人捆绑,且乙位置正中间,与其他两位同学形成三个元素,排法种数为,由古典概型的概率公式可得,由条件概率公式可得,故选B.【点睛】本题考查条件概率的计算,解这类问题时,要弄清各事件事件的关系,利用排列组合思想以及古典概型的概率公式计算相应事件的概率,并灵活利用条件概率公式计算出所求事件的概率,考查计算能力,
9、属于中等题3、B【解析】试题分析:若,则且,所以正确;若为真命题,则,应至少有一个是真命题,所以错;正确考点:1.四种命题;2.命题的否定4、C【解析】根据题中的条件得到函数的解析式为:f(x)x+2b,x(b,2b,又因为f(x)k(x1)的函数图象是过定点(1,0)的直线,再结合函数的图象根据题意求出参数的范围即可【详解】因为对任意的x(1,+)恒有f(2x)2f(x)成立, 且当x(1,2时,f(x)2x;f(x)2(2)=4x,x(2,4,f(x)4(2)=8x,x(4,8,所以f(x)x+2b,x(b,2b(b取1,2,4)由题意得f(x)k(x1)的函数图象是过定点(1,0)的直线
10、,如图所示只需过(1,0)的直线与线段AB相交即可(可以与B点重合但不能与A点重合)kPA2,kPB,所以可得k的范围为故选:C【点睛】解决此类问题的关键是熟悉求函数解析式的方法以及函数的图象与函数的性质,数形结合思想是高中数学的一个重要数学思想,是解决数学问题的必备的解题工具5、B【解析】根据含有一个量词的命题的否定,直接判断(1)错;根据正态分布的特征,直接判断(2)对;根据线性回归方程的特点,判断(3)正确;根据独立性检验的基本思想,可判断(4)错;根据方差的特征,可判断(5)正确.【详解】(1)命题“,”的否定形式是“,”,故(1)错;(2)因为,即服从正态分布,均值为,所以;故(2)
11、正确;(3)因为回归直线必过样本中心,又已知回归直线的斜率的估计值是2,样本点的中心为,所以,即所求回归直线方程为:;故(3)正确;(4)对分类变量与的随机变量的观测值来说,越小,判断“与有关系”的把握越大;故(4)错;(5)若将一组样本数据中的每个数据都加上同一个常数后,方差不变.故(5)错.故选:B.【点睛】本题主要考查命题真假的判定,熟记相关知识点即可,属于基础题型.6、C【解析】先判断函数在上单调递增,由,利用零点存在定理可得结果.【详解】因为函数在上连续单调递增,且,所以函数的零点在区间内,故选C.【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点
12、:(1)函数是否为单调函数;(2)函数是否连续.7、A【解析】根据诱导公式和余弦的倍角公式,化简得,即可求解【详解】由题意,可得,故选A【点睛】本题主要考查了三角函数的化简求值问题,其中解答中合理配凑,以及准确利用诱导公式和余弦的倍角公式化简、运算是解答的关键,着重考查了推理与运算能力,属于基础题8、C【解析】将条件转化为的展开式中不含常数项,不含项,不含项,然后写出的展开式的通项,即可分析出答案.【详解】因为的展开式中没有项,所以的展开式中不含常数项,不含项,不含项的展开式的通项为:所以当取时,方程无解检验可得故选:C【点睛】本题考查的是二项式定理的知识,在解决二项式展开式的指定项有关的问题
13、的时候,一般先写出展开式的通项.9、B【解析】首先利用余弦的倍角公式,对函数解析式进行化简,将解析式化简为fx=【详解】根据题意有fx所以函数fx的最小正周期为T=且最大值为fxmax=【点睛】该题考查的是有关化简三角函数解析式,并且通过余弦型函数的相关性质得到函数的性质,在解题的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果.10、B【解析】分析:正态总体的取值关于对称,位于之间的概率是0.6826,根据概率求出位于这个范围中的个数,根据对称性除以2 得到要求的结果详解:正态总体的取值关于对称,位于之间的概率是,则估计数学成绩在75分到86分之间的人数约为人.故选B .点睛:题考
14、查正态曲线的特点及曲线所表示的意义,是一个基础题,解题的关键是考试的成绩关对称,利用对称写出要用的一段分数的频数,题目得解11、B【解析】对函数求导,设切点,表示出切线方程,与已知切线相同,从而得到关于和的方程组,解出的值.【详解】设切点,因为,所以所以切线斜率则切线为整理得又因为切线方程为所以得,解得故选B项.【点睛】本题考查利用导数的几何意义,未知切点表示切线方程,属于中档题.12、B【解析】对函数求导,得(x0),令解得,因此函数的单调减区间为,故选B考点定位:本小题考查导数问题,意在考查考生利用导数求函数单调区间,注意函数本身隐含的定义域二、填空题:本题共4小题,每小题5分,共20分。
15、13、1【解析】试题分析:圆的直角坐标方程为,直线的直角坐标方程为,圆心到直线的距离,圆上的点到直线的距离的最小值为.考点:直角坐标与极坐标、距离公式.14、【解析】试题分析:令,则,故函数在上单调递减,又由题设可得,故,即,答案为考点:导数及运用15、【解析】分析:利用换元法简化不等式,令t=2x2x,t,22x+22x=t2+2,整理可得a(t+),t,根据函数y=t+的单调性求出最大值即可详解:a(2x2x)+0在x1,2时恒成立,令t=2x2x,t,22x+22x=t2+2,a(t+),t,显然当t=是,右式取得最大值为,a故答案为,+)点睛:考查了换元法的应用和恒成立问题的转化思想应
16、用恒成立的问题的解决方法:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若 就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为 ,若恒成立;(3)若 恒成立,可转化为(需在同一处取得最值).16、【解析】分析:根据随机变量服从正态分布,看出这组数据对应的正态曲线的对称轴,根据正态曲线的特点,得到,从而可得结果.详解:随机变量服从正态分布,得对称轴是,所以,可得 ,故答案为.点睛:本题考查正态曲线的性质,从形态上看,正态分布是一条单峰,对称呈种形的曲线,其对称轴,并在时取最大值,从点开始,曲线向正负两个方向递减延伸,不断逼近轴,但永不与轴相交,因此说明曲线在正负两个方向都
17、是以轴为渐近线的.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2),.【解析】(1)展开式的通项公式为,则前3项的系数分别为1,成等差,即可列式求解(2)由(1)知,则,对r赋值,即可求出所有的有理项【详解】(1)根据题意,()n的展开式的通项为Tr+1nr()nr()r,其系数为nr,则前3项的系数分别为1,成等差,解可得:或,又由,则,在中,令可得:(2)由(1)的结论,则的展开式的通项为,当时,有,当时,有,当时,有;则展开式中所有的有理项为.【点睛】本题主要考查二项式定理的应用,通项公式,求展开式中某项的系数,熟练掌握展开式的通项公式是解题的关键,属基
18、础题18、安排辆甲型车,辆乙型车利润最大,最大利润元.【解析】设甲型车辆,乙型车辆,根据题意列不等式组,画可行域,将目标函数化为斜截式,比较斜率,找到最优解,解方程组得最优解的坐标,代入目标函数即可得到.【详解】解:设甲型车辆,乙型车辆,则,即设利润为,则,化成斜截式可得,因为,由图可知,在点处取得最大值,联立解得,,所以的最大值为,所以,安排辆甲型车,辆乙型车利润最大,最大利润元.【点睛】本题考查了线性规划求最大值,属于中档题.19、(1);(2)分布列见解析,.【解析】(1)由题意可知,名同学中每名同学去图书批发市场购买的概率为,然后利用互斥事件的概率加法公式和独立重复试验的概率公式可计算
19、出所求事件的概率;(2)由题意可知,随机变量的可能取值有、,分别求出相应的概率,由此能求出随机变量的分布列和数学期望【详解】(1)由题意可知,名同学中每名同学去图书批发市场购买的概率为,所以,这人中至多有人去图书批发市场购买的概率为;(2)用、分别表示这人中去图书批发市场和网上购买的人数,记,则的可能取值为、,则,.所以,随机变量的分布列如下表所示:因此,随机变量的数学期望为.【点睛】本题考查概率、离散型随机变量的分布列、数学期望的求法,考查离散型随机变量的分布列、数学期望等基础知识,考查运算求解能力,是中档题20、 (1)33.26;(2) 拱高约为6.36米、拱宽约为31.11米时,土方工
20、程量最小最小土方量为立方米.【解析】(1)根据题意,建立坐标系,可得的坐标并设出椭圆的方程,将与点坐标代入椭圆方程,得,依题意,可得,计算可得答案;(2)根据题意,设椭圆方程为,将代入方程可得,结合基本不等式可得,分析可得当且,时,进而分析可得答案【详解】(1)如图建立直角坐标系,则点,椭圆方程为将与点坐标代入椭圆方程,得,此时此时因此隧道的拱宽约为33.26米;(2)由椭圆方程,根据题意,将代入方程可得因为即且,所以当取最小值时,有,得,此时,故当拱高约为6.36米、拱宽约为31.11米时,土方工程量最小最小土方量为立方米.【点睛】本题考查椭圆的实际运用,注意与实际问题相结合,建立合适的坐标系,设出点的坐标,结合椭圆的有关性质进行分析、计算、解题21、(1)(2)见解析,【解析】设表示2名女性观众中认为好看的人数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Module 1 My bedroom (教学设计)-2024-2025学年教科版(广州)英语四年级上册
- 5《走近我们的老师》教学设计-2024-2025学年道德与法治三年级上册统编版
- 5、搭石(教学设计)2024-2025学年统编版语文五年级上册
- 砍伐桉树合同范本
- Unit 1 Playtime Lesson 3(教学设计)-2023-2024学年人教新起点版英语二年级下册
- 2 百分数(二)-折扣(教学设计)-2023-2024学年六年级下册数学人教版
- 家具运输合同范本
- 就诊卡合同范本
- 10 《我们所了解的环境污染》《从“白色污染”说起》教学设计-2023-2024学年道德与法治四年级上册统编版
- Module 11 Unit 1第二课时教学设计 2024-2025学年外研版八年级英语上册
- 课堂嵌入式评价及其应用
- 高中物理课程标准
- 化工原理传质导论
- 环境与可持续发展ppt课件(完整版)
- Linux操作系统课件(完整版)
- 跨境电商亚马逊运营实务完整版ppt课件-整套课件-最全教学教程
- 中国传媒大学《当代电视播音主持教程》课件
- 浙美版小学六年级美术下册全册精品必备教学课件
- DB32∕T 4245-2022 城镇供水厂生物活性炭失效判别和更换标准
- 人教版七年级上册历史课程纲要
- 湿法冶金简介
评论
0/150
提交评论