重庆市涪陵中学2022年高二数学第二学期期末经典试题含解析_第1页
重庆市涪陵中学2022年高二数学第二学期期末经典试题含解析_第2页
重庆市涪陵中学2022年高二数学第二学期期末经典试题含解析_第3页
重庆市涪陵中学2022年高二数学第二学期期末经典试题含解析_第4页
重庆市涪陵中学2022年高二数学第二学期期末经典试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知,则的大小关系为( )ABCD2已知函数在区间上恰有一个最大值点和一个最小值点,则实数的取值范围是( )ABCD3设,则的值为()A2B2 046C2 043D24已知随机变量服从正态分布,且,则( )ABCD5在复平面内,复数 (i为

2、虚数单位)的共轭复数对应的点位于()A第一象限B第二象限C第三象限D第四象限6如图,四个相同的直角三角形与中间的小正方形拼成一个大正方形,已知小正方形的外接圆恰好是大正方形的内切圆,现在大正方形内随机取一点,则此点取自阴影部分的概率为( )ABCD7 设i为虚数单位,则(xi)6的展开式中含x4的项为()A15x4B15x4C20ix4D20ix48 “所有9的倍数都是3的倍数.某数是9的倍数,故该数为3的倍数,”上述推理A完全正确B推理形式不正确C错误,因为大小前提不一致D错误,因为大前提错误9已知随机变量满足P(=1)=pi,P(=0)=1pi,i=1,2.若0p1p2,则A,BC,10已

3、知的二项展开式的各项系数和为32,则二项展开式中的系数为( )A5B10C20D4011已知,若,则的值为( )ABCD12设函数,若实数分别是的零点,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在区间上随机地取一个实数,若实数满足的概率为,则_.14设某同学选择等级考科目时,选择物理科目的概率为0.5,选择化学科目的概率为0.6,且这两个科目的选择相互独立,则该同学在这两个科目中至少选择一个的概率是_15已知曲线在点处的切线为,则点的坐标为_16的展开式中含项的系数为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在班级活动中,4名男生和

4、3名女生站成一排表演节目.()3名女生相邻,有多少种不同的站法?()女生甲不能站在最左端,有多少种不同的站法?18(12分)(1)集合,或,对于任意,定义,对任意,定义,记为集合的元素个数,求的值;(2)在等差数列和等比数列中,是否存在正整数,使得数列的所有项都在数列中,若存在,求出所有的,若不存在,说明理由;(3)已知当时,有,根据此信息,若对任意,都有,求的值.19(12分)(12分)甲乙两人独立解某一道数学题,已知该题被甲独立解出的概率为0.6,被甲或乙解出的概率为0.92,(1)求该题被乙独立解出的概率;(2)求解出该题的人数的数学期望和方差20(12分)把编号为1、2、3、4、5的小

5、球,放入编号为1、2、3、4、5的盒子中.(1)恰有两球与盒子号码相同;(2)球、盒号码都不相同,问各有多少种不同的方法21(12分)夏天喝冷饮料已成为年轻人的时尚. 某饮品店购进某种品牌冷饮料若干瓶,再保鲜.()饮品成本由进价成本和可变成本(运输、保鲜等其它费用)组成.根据统计,“可变成本”(元)与饮品数量(瓶)有关系.与之间对应数据如下表:饮品数量(瓶)24568可变成本(元)34445依据表中的数据,用最小二乘法求出关于的线性回归方程;如果该店购入20瓶该品牌冷饮料,估计“可变成本”约为多少元?()该饮品店以每瓶10元的价格购入该品牌冷饮料若干瓶,再以每瓶15元的价格卖给顾客。如果当天前

6、8小时卖不完,则通过促销以每瓶5元的价格卖给顾客(根据经验,当天能够把剩余冷饮料都低价处理完毕,且处理完毕后,当天不再购进)该店统计了去年同期100天该饮料在每天的前8小时内的销售量(单位:瓶),制成如下表:每日前8个小时销售量(单位:瓶)15161718192021频数10151616151315若以100天记录的频率作为每日前8小时销售量发生的概率,若当天购进18瓶,求当天利润的期望值.(注:利润=销售额购入成本 “可变本成”)参考公式:回归直线方程为,其中参考数据:, .22(10分)在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,圆的极坐标方

7、程为(1)若与相交于两点,求;(2)圆的圆心在极轴上,且圆经过极点,若被圆截得的弦长为,求圆的半径参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用等中间值区分各个数值的大小【详解】,故,所以故选A【点睛】本题考查大小比较问题,关键选择中间量和函数的单调性进行比较2、B【解析】首先利用三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步利用正弦型函数的性质的应用求出结果【详解】由题意,函数,令,所以,在区间上恰有一个最大值点和最小值点,则函数恰有一个最大值点和一个最小值点在区间,则,解答,即,故选B【点睛

8、】本题主要考查了三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考察学生的运算能力和转换能力,属于基础题型3、D【解析】分析:先令得,再令得,解得结果.详解:令得令得=0因此,选D.点睛:“赋值法”普遍适用于恒等式,是一种重要的方法,对形如的式子求其展开式的各项系数之和,常用赋值法, 只需令即可;对形如的式子求其展开式各项系数之和,只需令即可.4、B【解析】随机变量服从正态分布,即对称轴是,故选5、D【解析】分析:首先求得复数z,然后求解其共轭复数即可.详解:由复数的运算法则有:,则,其对应的点位于第四象限.本题选择D选项.点睛:本题主要考查复数的运算法则及其应用等知识,意在考查学生的转

9、化能力和计算求解能力.6、B【解析】分析:设大正方形的边长为1,其内切圆的直径为1,则小正方形的边长为,从而阴影部分的面积为,由此利用几何概型能求出在大正方形内随机取一点,则此点取自阴影部分的概率.详解:设大正方形的边长为1,其内切圆的直径为1,则小正方形的边长为,所以大正方形的面积为1,圆的面积为,小正方形的面积为,则阴影部分的面积为,所以在大正方形内随机取一点,则此点取自阴影部分的概率.点睛:本题主要考查了面积比的几何概型及其概率的计算问题,其中根据题意,准确求解阴影部分的面积是解答本题的关键,着重考查了推理与运算能力,以及函数与方程思想的应用,属于基础题.7、A【解析】试题分析:二项式(

10、x+i)6的展开式的通项为Tr+1=C6rx6-ri【考点】二项展开式,复数的运算【名师点睛】本题考查二项式定理及复数的运算,复数的概念及运算也是高考的热点,几乎是每年必考的内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可二项式(x+i)6可以写为(i+x)6,则其通项为C6ri8、A【解析】根据三段论定义即可得到答案.【详解】根据题意,符合逻辑推理三段论,于是完全正确,故选A.【点睛】本题主要考查逻辑推理,难度不大.9、A【解析】,故选A【名师点睛】求离散型随机变量的分布列,首先要根据具体情况确定的取值情况,然后利用排列,组合与概率知识求出取各个值时的概率对于服从某些特殊分布的随

11、机变量,其分布列可以直接应用公式给出,其中超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数由已知本题随机变量服从两点分布,由两点分布数学期望与方差的公式可得A正确10、B【解析】首先根据二项展开式的各项系数和,求得,再根据二项展开式的通项为,求得,再求二项展开式中的系数.【详解】因为二项展开式的各项系数和,所以,又二项展开式的通项为=,所以二项展开式中的系数为答案选择B【点睛】本题考查二项式展开系数、通项等公式,属于基础题11、B【解析】分析: 由定积分的几何意义求得定积分,在二项展开式中令可求解详解:由积分的几何意义知,在中,令,则,故选B点睛:本题考查定积分的几何意义,考查

12、二项式定理的应用在二项展开式中求与系数和有关的问题通常用赋值法根据所求和式的结构对变量赋予不同的值可得对应的恒等式如本题赋值,如果只求系数和,则赋值等等12、A【解析】由题意得,函数在各自的定义域上分别为增函数, 又实数分别是的零点,故选A点睛:解答本题时,先根据所给的函数的解析式判断单调性,然后利用判断零点所在的范围,然后根据函数的单调性求得的取值范围,其中借助0将与联系在一起是关键二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】画出数轴,利用满足的概率,可以求出的值即可.【详解】如图所示,区间的长度是6,在区间上随机地取一个数,若满足的概率为,则有,解得,故答案是:2.【点

13、睛】该题考查的是有关长度型几何概型的问题,涉及到的知识点有长度型几何概型的概率公式,属于简单题目.14、0.8【解析】根据相互独立事件概率的计算公式,及对立事件的概率求法,即可求解.【详解】因为选择物理科目的概率为0.5,选择化学科目的概率为0.6,所以既不选择物理也不选择化学的概率为 所以由对立事件的性质可知至少选择一个科目的概率为 故答案为: 【点睛】本题考查了独立事件的概率求法,对立事件的性质应用,属于基础题.15、.【解析】分析:设切点坐标为,求得,利用且可得结果.详解:设切点坐标为,由得,即,故答案为.点睛:应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1) 已知切

14、点求斜率,即求该点处的导数;(2) 己知斜率求切点即解方程;(3) 巳知切线过某点(不是切点) 求切点, 设出切点利用求解.16、.【解析】计算出二项展开式通项,令的指数为,求出参数的值,再将参数的值代入二项展开式通项可得出项的系数.【详解】的展开式通项为,令,得,因此,的展开式中含项的系数为,故答案为:.【点睛】本题考查二项式指定项的系数的计算,解题的关键就是利用二项展开式通项进行计算,考查运算求解能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、()720种;()4320种【解析】()相邻问题用“捆绑法”;()有限制元素采取“优先法”.【详解】解:()3

15、名女生相邻可以把3名女生作为一个元素,和4名男生共有5个元素排列,有种情况,其中3名女生内部还有一个排列,有种情况,一共有种不同的站法.()根据题意,女生甲不能站在最左端,那么除最左端之外,甲有种站法,将剩余的6人全排列,安排在剩余的位置,有种站法,一共有种不同的站法.【点睛】本题主要考查排列的应用,较基础.18、(1),;(2)为正偶数;(3);【解析】(1)由题意得:集合表示方程解的集合,由于或,即可得到集合的元素个数;利用倒序相加法及,即可得到答案;(2)假设存在,对分奇数和偶数两种情况进行讨论;(3)利用类比推理和分类计数原理可得的值.【详解】(1)由题意得:集合表示方程解的集合,由于

16、或,所以方程中有个,个,从而可得到解的情况共有个,所以.令,所以,所以,所以,即.(2)当取偶数时,中所有项都是中的项.由题意:均在数列中,当时,说明数列的第项是数列中的第项.当取奇数时,因为不是整数,所以数列的所有项都不在数列中.综上所述:为正偶数.(3)当时,有当时,又对任意,都有所以即为的系数,可取中、中的1;或中、中的;或中、中的;或中的、中的;所以.【点睛】本题第(1)问考查对集合新定义的理解;第(2)问考查等比数列的控究性问题;第(3)问考查类比推理与计数原理相结合;对逻辑推理能力和运算求解能力要求较高,属于难题.19、(1)P2【解析】试题分析:解:(1)记甲、乙分别解出此题的事

17、件记为A,B.设甲独立解出此题的概率为P1,乙为P则P(A)=P(A+B)=1-P(012P0.080.440.48考点:本题主要考查离散型随机变量的概率计算。点评:注意事件的相互独立性及互斥事件,利用公式计算概率。20、 (1)20;(2)44.【解析】(1)由题意结合排列组合公式和乘法原理即可求得恰有两球与盒子号码相同的种数;(2)利用全错位排列的递推关系式可得球、盒号码都不相同的方法种数.【详解】(1)易知3个球、盒号码都不相同共有2种情况,则恰有两球与盒子号码相同的排列方法种数为:种;(2)利用全错位排列的递推关系式:可得:,即球、盒号码都不相同共有44种方法.【点睛】本题主要考查排列

18、组合公式的应用,全错位排列的递推关系式等知识,意在考查学生的转化能力和计算求解能力.21、 (),可变成本”约为元;()利润的期望值为元【解析】()将关于之间对应的数据代入最小二乘法公式求出与,可得出回归直线方程,再将代入回归直线方程可得出“可变成本”的值;()根据利润公式分别算出当销量分别为瓶、瓶、瓶、瓶时的利润和频率,列出利润随机变量的分布列,结合分布列计算出数学期望值,即可得出答案。【详解】(),所以关于的线性回归方程为:当时,所以该店购入20瓶该品牌冷饮料,估计“可变成本”约为元;()当天购进18瓶这种冷饮料,用表示当天的利润(单位:元),当销售量为15瓶时,利润,;当销售量为16瓶时,利润,;当销售量为17瓶时,利润,;当销售量为18瓶时,利润,;那么的分布列为:52.162.172.182.1的数学期望是:,所以若当天购进18瓶,则当天利润的期望值为元.【点睛】本题考查回归直线方程以及随机变量的分布列与数学期望,在求解随机变量分布列时,关键要弄清楚随机变量所服从的分布类型,掌握各分布类型的特点,考查分析问题能力与计算能力,属于中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论