版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题
2、卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知随机变量服从二项分布,则( )ABCD2设函数 的定义域,函数y=ln(1-x)的定义域为,则A(1,2)B(1,2C(-2,1)D-2,1)3已知a,bR,则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件4关于函数的四个结论:的最大值为;函数的图象向右平移个单位长度后可得到函数的图象;的单调递增区间为,;图象的对称中心为其中正确的结论有( )A0个B1个C2个D3个5已知,则“”是“”的( )A充分非必要条件B必要非充分条件C充要条件D既
3、非充分又非必要条件6定义:如果一个向量列从第二项起,每一项与它的前一项的差都等于同一个常向量,那么这个向量列做等差向量列,这个常向量叫做等差向量列的公差.已知向量列是以为首项,公差的等差向量列.若向量与非零向量)垂直,则( )ABCD7已知等式x4+a1x3+A(1,2,3,4) B(0,3,4,0)C(0,-3,4,-1) D(-1,0,2,-2)8若函数f(x)=x2lnx与函数A(-,1e2-1e9已知曲线的参数方程为:,且点在曲线上,则的取值范围是( )ABCD10若某校研究性学习小组共6人,计划同时参观科普展,该科普展共有甲,乙,丙三个展厅,6人各自随机地确定参观顺序,在每个展厅参观
4、一小时后去其他展厅,所有展厅参观结束后集合返回,设事件A为:在参观的第一小时时间内,甲,乙,丙三个展厅恰好分别有该小组的2个人;事件B为:在参观的第二个小时时间内,该小组在甲展厅人数恰好为2人,则( )ABCD11设等差数列的公差为d,若数列为递减数列,则( )ABCD12用0,1,9十个数字,可以组成有重复数字的三位数的个数为( )A243B252C261D279二、填空题:本题共4小题,每小题5分,共20分。13已知直线与圆相交于A、B两点,则AOB大小为_14甲、乙、丙射击命中目标的概率分别为、,现在三人同时射击目标,且相互不影响,则目标被击中的概率为_15已知向量.若与共线,则在方向上
5、的投影为_.16设随机变量,且,则事件“”的概率为_(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知的展开式的各项系数之和等于的展开式中的常数项.求:(1)展开式的二项式系数和;(2)展开式中项的二项式系数.18(12分)如图,在四棱锥中,底面为矩形,平面,为棱的中点,.(1)证明:平面.(2)求二面角的余弦值.19(12分)如图所示,在以为直径的半圆周上,有异于的六个点,直径上有异于的四个点.则:(1)以这12个点(包括)中的4个点为顶点,可作出多少个四边形?(2)以这10个点(不包括)中的3个点为顶点,可作出多少个三角形?20(12分)已知集合
6、,.(1)求;(2)若“”是“”的必要不充分条件,求实数a的取值范围.21(12分)已知数列的前项和为,且.(1)求数列的通项公式;(2)若,求数列的前项和.22(10分)如图,在中,D是边BC上一点,(1)求DC的长;(2)若,求的面积参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】表示做了次独立实验,每次试验成功概率为,则选2、D【解析】由得,由得,故,选D.【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.3、A【解析】根据复数的基本运算,结合充分条件和必要条件的定义进行判
7、断即可【详解】解:因为,若,则等式成立,即充分性成立,若成立,即,所以解得或即必要性不成立,则“”是“”的充分不必要条件,故选:A【点睛】本题主要考查充分条件和必要条件的判断,结合复数的基本运算是解决本题的关键,属于基础题4、B【解析】把已知函数解析式变形,然后结合型函数的性质逐一核对四个命题得答案【详解】函数的最大值为,故错误;函数的图象向右平移个单位长度后,得即得到函数的图象,故正确;由解得的单调递增区间为故错误;由,得图象的对称中心为,故错误.其中正确的结论有1个。故选:B.【点睛】本题考查命题的真假判断与应用,考查正弦型函数的性质,考查三角函数的平移变换,难度一般.5、A【解析】“a1
8、”“”,“”“a1或a0”,由此能求出结果【详解】aR,则“a1”“”,“”“a1或a0”,“a1”是“”的充分非必要条件故选A【点睛】充分、必要条件的三种判断方法1定义法:直接判断“若则”、“若则”的真假并注意和图示相结合,例如“”为真,则是的充分条件2等价法:利用与非非,与非非,与非非的等价关系,对于条件或结论是否定式的命题,一般运用等价法3集合法:若,则是的充分条件或是的必要条件;若,则是的充要条件6、D【解析】先根据等差数列通项公式得向量,再根据向量垂直得递推关系,最后根据累乘法求结果.【详解】由题意得,因为向量与非零向量)垂直,所以因此故选:D【点睛】本题考查等差数列通项公式、向量垂
9、直坐标表示以及累乘法,考查综合分析求解能力,属中档题.7、C【解析】试题分析:本题可以采用排除法求解,由题设条件,等式左右两边的同次项的系数一定相等,故可以比较两边的系数来排除一定不对的选项,由于立方项的系数与常数项相对较简单,宜先比较立方项的系数与常数项,由此入手,相对较简解:比较等式两边x3的系数,得4=4+b1,则b1=1,故排除A,D;再比较等式两边的常数项,有1=1+b1+b2+b3+b4,b1+b2+b3+b4=1故排除B故应选C考点:二项式定理点评:排除法做选择题是一种间接法,适合题目条件较多,或者正面证明、判断较困难的题型8、B【解析】通过参数分离得到a=lnx2x-x2lnx
10、【详解】若函数f(x)=x2lnx2ln设t=t=lnxxt=1-lnx画出图像:a=t2-a=t2-t1t2=故答案为B【点睛】本题考查了函数的零点问题,参数分离换元法是解题的关键.9、C【解析】分析:由题意得曲线C是半圆,借助已知动点在单位圆上任意动,而所求式子 ,的形式可以联想成在单位圆上动点P与点C(0,1)构成的直线的斜率,进而求解详解:即 其中 由题意作出图形,令,则可看作圆上的动点到点的连线的斜率而相切时的斜率,由于此时直线与圆相切,在直角三角形中,由图形知,的取值范围是 则的取值范围是故选C点睛:此题重点考查了已知两点坐标写斜率,及直线与圆的相切与相交的关系,还考查了利用几何思
11、想解决代数式子的等价转化的思想10、A【解析】先求事件A包含的基本事件,再求事件AB包含的基本事件,利用公式可得.【详解】由于6人各自随机地确定参观顺序,在参观的第一小时时间内,总的基本事件有个;事件A包含的基本事件有个;在事件A发生的条件下,在参观的第二个小时时间内,该小组在甲展厅人数恰好为2人的基本事件为个,而总的基本事件为,故所求概率为,故选A.【点睛】本题主要考查条件概率的求解,注意使用缩小事件空间的方法求解.11、C【解析】试题分析:因为是等差数列,则,又由于为递减数列,所以,故选C.考点:1.等差数列的概念;2.递减数列.12、B【解析】由分步乘法原理知:用0,1,9十个数字组成的
12、三位数(含有重复数字的)共有91010=900,组成无重复数字的三位数共有998=648,因此组成有重复数字的三位数共有900648=1二、填空题:本题共4小题,每小题5分,共20分。13、60【解析】由垂径定理求得相交弦长,然后在等腰三角形中求解【详解】圆心到直线的距离为,圆心半径为,为等边三角形,【点睛】本题考查直线与圆相交弦长问题求直线与圆相交弦长一般用垂径定理求解,即求出弦心距,则有14、【解析】分析:根据相互独立事件的概率乘法公式,目标被击中的概率等于1减去甲、乙、丙三人都没有击中目标的概率,运算求得结果.详解:目标被击中的概率等于1减去甲、乙、丙三人都没有击中目标的概率,故目标被击
13、中的概率是.故答案为.点睛:本题主要考查相互独立事件的概率乘法公式,所求的事件与它的对立事件概率间的关系.15、【解析】先根据与共线求出的值,再利用向量的投影公式求在方向上的投影.【详解】.又与共线,在方向上的投影为.故答案为:【点睛】本题主要考查向量共线的坐标表示和向量的投影的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.16、【解析】根据二项分布求得,再利用二项分布概率公式求得结果.【详解】由可知:本题正确结果:【点睛】本题考查二项分布中方差公式、概率公式的应用,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1)(2)【解析】根据通项公式,求
14、出二项式的常数项,再求出的展开式的各项系数之和,根据题意可以求出的值;(1)直接运用二项式展开式二项式系数和公式求解即可;(2)运用二项式的通项公式即可求出展开式中项的二项式系数.【详解】二项式的通项公式为:,令,因此的展开式中的常数项为:,在中,令,所以的展开式的各项系数之和为,由题意可知:.,(1) 因为,所以展开式的二项式系数和为;(2) 因为,所以二项式的通项公式为:,令,所以展开式中项的二项式系数为:.【点睛】本题考查了二项式通项公式的应用,考查了数学运算能力,区分是二项式的系数还是项的系数是解题的关键.18、(1)见证明;(2)【解析】(1)先由平面得到面PDC平面,可得平面,则有
15、,再利用勾股数及等腰三角形可得,可证得平面,即证得结论.(2)以D为坐标原点,建立如图所示空间直角坐标系Dxyz,利用向量法能求出二面角PAED的余弦值【详解】(1)取的中点,连接,则.由题知平面,面PDC,所以面PDC平面,又底面为矩形,故平面,所以, 在中,则.因为,所以,即CDP为等腰三角形,又F为的中点,所以.因为,所以平面,即平面.(2)以为原点,所在直线分别为,轴,建立如图所示的空间直角坐标系,则,.由题知,设平面的法向量为,则,令,则,得.因为平面,所以为平面的一个法向量,所以,由图可知,二面角为锐角,所以二面角的余弦值为.【点睛】本题考查了线面垂直、面面垂直的证明,考查了利用空
16、间向量法求解二面角的余弦值的方法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题19、(1)360;(2)116.【解析】分析:(1)构成四边形,需要四个点,且无三点共线,可以分成三类,将三类情况加到一起即可;(2)类似于(1)可分三种情况讨论得三角形个数为.详解:(1)构成四边形,需要四个点,且无三点共线,可以分成三类:四个点从中取出,有个四边形;三个点从中取出,另一个点从,中取出,有个四边形;二个点从中取出,另外二个点从,中取出,有个四边形故满足条件的四边形共有(个)(2)类似于(1)可分三种情况讨论得三角形个数为(个)点睛:排列与组合问题要
17、区分开,若题目要求元素的顺序则是排列问题,排列问题要做到不重不漏,有些题目带有一定的约束条件,解题时要先考虑有限制条件的元素,高考中常见的排列组合问题还有分组分配问题,即不同元素分到不同组内时,通常先分组后分配.20、 (1) .(2) .【解析】分析:(1)先求出A,B集合的解集,A集合求定义,B集合解不等式即可,然后由交集定义即可得结论;(2)若“”是“”的必要不充分条件,说明且,然后根据集合关系求解.详解:(1), 则 (2),因为“”是“”的必要不充分条件,所以且 由,得,解得 经检验,当时,成立,故实数的取值范围是 点睛:考查定义域,解不等式,交集的定义以及必要不充分条件,正确求解集合,缕清集合间的基本关系是解题关键,属于基础题.21、 (1) ;(2) .【解析】(1)由题意结合递推关系式可得数列是首项为,公比为的等比数列,则.(2)由题意结合(1)的结论可得.错位相减可得数列的前项和.【详解】(1) -得,则 ,在式中,令,得.数列是首项为,公比为的等比数列, .(2). 所以 ,则 ,-得, , .【点睛】一般地,如果数列an是等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国高硬脆材料加工行业开拓第二增长曲线战略制定与实施研究报告
- 2025-2030年中国全钢子午胎行业开拓第二增长曲线战略制定与实施研究报告
- 在2024年岁末年初安全生产工作会议上的讲话
- 2020-2025年中国物流自动化行业市场前景预测及投资方向研究报告
- 广东省深圳市盐田区2023-2024学年五年级上学期英语期末试卷
- 五年级数学(小数除法)计算题专项练习及答案汇编
- 应急移动雷达塔 5米玻璃钢接闪杆 CMCE电场补偿器避雷针
- 快易冷储罐知识培训课件
- 2025年人教版英语五年级下册教学进度安排表
- 世界粮食日珍惜节约粮食主题66
- 2024-2025学年北京房山区初三(上)期末英语试卷
- 2024年三年级英语教学工作总结(修改)
- 咖啡厅店面转让协议书
- 期末(试题)-2024-2025学年人教PEP版英语六年级上册
- 鲜奶购销合同模板
- 申论公务员考试试题与参考答案(2024年)
- DB4101T 9.1-2023 反恐怖防范管理规范 第1部分:通则
- 2024-2030年中国公安信息化建设与IT应用行业竞争策略及投资模式分析报告
- 2024年加油站场地出租协议
- 南宁房地产市场月报2024年08月
- 2024年金融理财-担保公司考试近5年真题附答案
评论
0/150
提交评论