版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,正实数满足且,若在区间上的最大值为2,则的值分别为A,2B,C,2D,42已知,且
2、,则向量在方向上的投影为( )ABCD3的展开式中,的系数为( )A15B-15C60D-604定义域为的可导函数的导函数为,满足,且,则不等式的解集为( )ABCD5已知函数,若函数在区间上为单调递减函数,则实数的取值范围是( )ABCD6已知复数,则( )A1BCD57下列命题中真命题的个数是( )若是假命题,则、都是假命题;命题“,”的否定是“,”若:,:,则是的充分不必要条件.A0B1C2D38已知函数.若,则( )A4B3C2D19在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概率的事件是()A恰有1件一等品B至少有一件一等品C至多有一件一等品D都不是一等品10已知复数,
3、则的共轭复数()ABCD11把四个不同的小球放入三个分别标有号的盒子中,不允许有空盒子的放法有( )A12种B24种C36种D48种12已知集合,则等于( )A B CD 二、填空题:本题共4小题,每小题5分,共20分。13给出定义 :对于三次函数设是函数的导数,是的导数,若方程有实数解,则称点为函数的“拐点”,经过研究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.已知函数.设.若则_14设,则_.15已知某程序框图如图所示,则该程序运行后输出的值为_16设圆x2+y21上的动点P到直线3x+4y100的距离为d,则d的最大值为_三、解答题:共70分
4、。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,正四棱柱的底面边长,若与底面所成的角的正切值为(1)求正四棱柱的体积;(2)求异面直线与所成的角的大小18(12分)(1)证明不等式:,;(2)已知,;p是q的必要不充分条件,求的取值范围.19(12分)已知定义域为的函数,是奇函数.(1)求,的值;(2)若对任意的,不等式恒成立,求实数的取值范围.20(12分)已知正项数列an 为等比数列,等差数列bn 的前n 项和为Sn (nN* ),且满足:S11=208,S9S7=41,a1=b2,a1=b1(1)求数列an,bn 的通项公式;(2)设Tn=a1b1+a2b2+anbn (n
5、N* ),求Tn; (1)设,是否存在正整数m,使得cmcm+1cm+2+8=1(cm+cm+1+cm+2)21(12分)在中,角的对边分别为,.(1)求;(2)若,求的周长.22(10分)设函数.()求的值;()设,若过点可作曲线的三条切线,求实数的取值范围参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】试题分析:画出函数图像,因为正实数满足且,且在区间上的最大值为1,所以=1,由解得,即的值分别为,1故选A考点:本题主要考查对数函数的图象和性质点评:基础题,数形结合,画出函数图像,分析建立m,n的方程2、C【解析】
6、分析:由推导出,从而,由此能求出向量在向量方向上的投影.详解:,且, ,向量在向量方向上的投影为,故选C. 点睛:本题主要考查向量的模及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角, (此时往往用坐标形式求解);(2)求投影, 在 上的投影是;(3)向量垂直则;(4)求向量 的模(平方后需求).3、C【解析】试题分析:依题意有,故系数为.考点:二项式4、C【解析】构造函数,根据可知,得到在上单调递减;根据,可将所求不等式转化为,根据函数单调性可得到解集.【解答】令,则在上单调递减 则不等式可化为等价于,即 即所求不等式的解集
7、为:本题正确选项:【点睛】本题考查利用导数研究函数的单调性求解不等式,关键是能够构造函数,将所求不等式转变为函数值的比较,从而利用其单调性得到自变量的关系5、B【解析】因为,所以,由正弦函数的单调性可得,即,也即,所以,应选答案B。点睛:解答本题的关键是将函数看做正弦函数,然后借助正弦函数的单调性与单调区间的关系,依据区间端点之间的大小关系建立不等式组,最后通过解不等式组使得问题巧妙获解。6、C【解析】.故选7、C【解析】分析:由复合命题的真假判断判断;写出全程命题的否定判断;由不等式的性质结合充分必要条件的判定方法判断详解:若pq是假命题,则p,q中至少一个是假命题,故错误;命题“xR,x3
8、x2+10”的否定是“”,故正确;若x10,则,反之,若,则x0或x1又p:x1,q:,p是q的充分不必要条件,故正确正确命题的个数是2个故选:C点睛:本题考查命题的真假判断与应用,考查充分必要条件的判定方法,考查命题的否定,属于中档题8、D【解析】令,则是R上的奇函数,利用函数的奇偶性可以推得的值【详解】令 ,则是上的奇函数,又,所以,所以,所以,故选D.【点睛】本题主要考查函数的奇偶性的应用,属于中档题9、C【解析】将件一等品编号为,件二等品的编号为,列举出从中任取件的所有基本事件的总数,分别计算选项的概率,即可得到答案【详解】将3件一等品编号为1,2,3,2件二等品编号为4,5,从中任取
9、2件有10种取法:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)其中恰含有1件一等品的取法有:(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),恰有1件一等品的概率为P1,恰有2件一等品的取法有:(1,2),(1,3),(2,3)故恰有2件一等品的概率为P2,其对立事件是“至多有一件一等品”,概率为P31P21.【点睛】本题主要考查了古典概型及其概率的计算问题,其中明确古典概型的基本概念,以及古典的概型及概率的计算公式,合理作出计算是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题10、A【
10、解析】对复数进行化简,然后得到,再求出共轭复数.【详解】因为,所以,所以的共轭复数故选A项.【点睛】本题考查复数的四则运算,共轭复数的概念,属于简单题.11、C【解析】先从4个球中选2个组成复合元素,再把个元素(包括复合元素)放入个不同的盒子,即可得出答案.【详解】从个球中选出个组成复合元素有 种方法,再把个元素(包括复合元素)放入个不同的盒子中有 种放法,所以四个不同的小球放入三个分别标有号的盒子中,不允许有空盒子的放法有,故选C.【点睛】本题主要考查了排列与组合的简单应用,属于基础题.12、C【解析】由不等式性质求出集合A、B,由交集的定义求出可得答案.【详解】解:可得;,可得=故选C.【
11、点睛】本题考查了交集及其运算,求出集合A、B并熟练掌握交集的定义是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、-4037【解析】由题意对已知函数求两次导数,令二阶导数为零,即可求得函数的中心对称,即有,借助倒序相加的方法,可得进而可求的解析式,求导,当代入导函数解得,计算求解即可得出结果.【详解】函数函数的导数由得解得,而故函数关于点对称, 故,两式相加得,则.同理,令,则,故函数关于点对称, ,两式相加得,则.所以当时, 解得: ,所以则.故答案为: -4037.【点睛】本题考查对新定义的理解,考查二阶导数的求法,仔细审题是解题的关键,考查倒序法求和,难度较难.14、1
12、023【解析】分别将代入求解即可【详解】将代入得;将代入得 故 故答案为1023【点睛】本题考查二项式展开式中项的系数和,考查赋值法和方程的思想,是基础题15、【解析】执行程序框图,依次写出每次循环得到的S,i的值,当i2019时,不满足条件退出循环,输出S的值为【详解】执行程序框图,有S2,i1满足条件 ,执行循环,S,i2满足条件 ,执行循环,S,i3满足条件 ,执行循环,S,i4满足条件 ,执行循环, S2,i5观察规律可知,S的取值以4为周期,由于2018504*4+2,故有:S, i2019,不满足条件退出循环,输出S的值为,故答案为【点睛】本题主要考查了程序框图和算法,其中判断S的
13、取值规律是解题的关键,属于基本知识的考查16、3【解析】将问题转化为求圆心到直线的距离加上半径,再由点到直线的距离公式可得结果.【详解】依题意可知,圆x2+y21上的动点P到直线3x+4y100的距离的最大值等于圆心到直线的距离加上半径,因为圆心到直线为,圆的半径为1,所以的最大值为.故答案为:.【点睛】本题考查了点到直线的距离公式,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)是与底面所成的角,所以,可得,在用柱体体积公式即可求得答案;(2)因为正四棱柱,可得,所以是异面直线与所成的角.【详解】(1)如图,连接 正四棱柱的底面边长
14、面 是与底面所成的角在中, 正四棱柱的体积为:.(2) 正四棱柱 是异面直线与所成的角在中, 异面直线与所成的角为:.【点睛】本题考查了正四棱柱体积和空间异面直线夹角.在求解异面直线所成角的求解,通过平移找到所成角是解这类问题的关键.18、(1)见证明;(2).【解析】(1)构造函数,将问题转化为,然后利用导数求出函数的最小值即可得证;(2)解出命题中的不等式,由题中条件得出的两个取值范围之间的包含关系,然后列出不等式组可解出实数的取值范围.【详解】(1)即证:,.令,则,令,得.当时,;当时,.所以,函数单调递减区间为,单调递增区间为.所以,函数在处取得极小值,亦即最小值,即.因此,因此,对
15、任意的,;(2)解不等式,得,则.由于是的必要不充分条件,则,则有,解得.当时,则,合乎题意.因此,实数的取值范围是.【点睛】本题第(1)考查利用导数证明函数不等式,一般构造差函数,转化为差函数的最值来证明,第(2)问考查利用充分必要条件求参数的取值范围,一般转化为两集合间的包含关系求解,考查化归与转化数学思想,属于中等题.19、(1);(2)【解析】(1)先由求出,然后由求出(2)由得在上为减函数,然后将不等式化为即可.【详解】(1)因为是上的奇函数,所以,即,解得.从而有.又由知,解得.经检验,当时,满足题意(2)由(1)知,由上式易知在上为减函数,又因为是奇函数,从而不等式等价于.因为是
16、上的减函数,由上式推得.即对一切有,从而,解得.【点睛】本题主要考查的是利用函数的奇偶性和单调性解不等式,较为典型.20、(1);(2);(1)存在,m=2【解析】分析:(1)先根据已知条件列方程求出b1=2,d=1,得到等差数列bn的通项,再求出,即得等比数列an的通项.(2)利用错位相减法求Tn.(1)对m分类讨论,探究是否存在正整数m,使得cmcm+1cm+2+8=1(cm+cm+1+cm+2)详解:(1)等差数列bn 的前n 项和为Sn (nN* ),且满足:S11=208,S9S7=41,即解得b7=16,公差为1,b1=2,bn=1n5,a1=b2=1,a1=b1=4,数列an 为
17、等比数列,an=2n1,nN*(2)Tn=a1b1+a2b2+anbn=21+12+(1n5)2n1,2Tn=22+122+(1n5)2n,得Tn=2+1(2+22+2n1)(1n5)2n=(81n)2n8,Tn=(1n8)2n+8,nN*(1)设,当m=1时,c1c2c1+8=114+8=12,1(c1+c2+c1)=18,不相等,当m=2时,c2c1c4+8=147+8=16,1(c2+c1+c4)=16,成立,当m1且为奇数时,cm,cm+2为偶数,cm+1为奇数,cmcm+1cm+2+8为偶数,1(cm+cm+1+cm+2)为奇数,不成立,当m4且为偶数时,若cmcm+1cm+2+8=
18、1(cm+cm+1+cm+2),则(1m5)2m(1m+1)+8=1(1m5+2m+1m+1),即(9m212m8)2m=18m20,(*)(9m212m8)2m(9m212m8)2418m20,(*)不成立,综上所述m=2点睛:(1)本题主要考查等差等比数列的通项的求法,考查错位相减法求和,考查数列的综合应用,意在考查对这些基础知识的掌握水平和分析推理能力基本运算能力.(2)本题的难点是第1问,关键是对m分m=1,m=2,m1且为奇数, m4且为偶数四种情况讨论.21、(1)(2)【解析】(1)由余弦定理化简即得A的值;(2)由题得,再利用正弦定理求出a,c,即得ABC的周长.【详解】解:(1)根据,可得 所以.又因为,所以.(2),所以,因为,所以,则的周长为.【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平,属于基础题.22、()8()【解析】()根据二项定理展开式展开,即可确定对应项的系数,即可求解.()代入值后可求得的解析式,经过检验可知点不在曲线上,即可设切点坐标为,代入曲线方程并求得,由导数的几何意义及两点间斜率公式,可得方程,且由题意可知该方程有三个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 审计总价合同范例
- 工程合同范例单价合同
- 海鲜冷库经销合同范例
- 婚后买房合同范例
- 中考数学一轮考点复习精讲精练专题08 平面直角坐标系与函数概念【考点巩固】(解析版)
- 纺织雇佣合同范例
- 固定兼职合同范例
- 手机订货购销合同范例
- 企业联盟合同范例
- 手机货物买卖合同范例
- 安全生产培训课件
- 养老院安全巡查记录制度
- 2025年建筑公司年度工作总结及2025年计划
- 母婴安全培训课件
- 2024年度三方新能源汽车充电桩运营股权转让协议3篇
- 《人力资源招聘体系》课件
- 模拟集成电路设计知到智慧树章节测试课后答案2024年秋广东工业大学
- 2024年国家工作人员学法用法考试题库及参考答案
- 中国成人心肌炎临床诊断与治疗指南2024解读
- 期末(试题)-2024-2025学年人教PEP版英语六年级上册
- 创新创业创造:职场竞争力密钥智慧树知到期末考试答案章节答案2024年上海对外经贸大学
评论
0/150
提交评论