2022年陕西省西安地区八校数学高二第二学期期末监测模拟试题含解析_第1页
2022年陕西省西安地区八校数学高二第二学期期末监测模拟试题含解析_第2页
2022年陕西省西安地区八校数学高二第二学期期末监测模拟试题含解析_第3页
2022年陕西省西安地区八校数学高二第二学期期末监测模拟试题含解析_第4页
2022年陕西省西安地区八校数学高二第二学期期末监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题

2、卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1一个停车场有5个排成一排的空车位,现有2辆不同的车停进这个停车场,若停好后恰有2个相邻的停车位空着,则不同的停车方法共有A6种B12种C36种D72种2已知点,则向量在方向上的投影为( )ABCD3如图所示是求的程序流程图,其中应为( )ABCD4已知函数在时取得极大值,则的取值范围是( )ABCD5设离散型随机变量的分布列如右图,则的充要条件是( ) 123A BCD6名学生在一次数学考试中的成绩分别为如,要研究这名学生成绩的平均波动情况,则最能说明问题的是( )A频率B平均数

3、C独立性检验D方差7函数在上的极大值为( )AB0CD8( )A5BC6D9在极坐标系中,已知点,则过点且平行于极轴的直线的方程是( )ABCD10已知函数,满足和均为偶函数,且,设,则ABCD11设双曲线C:的一个顶点坐标为(2,0),则双曲线C的方程是()ABCD12已知,命题“若,则.”的逆命题、否命题、逆否命题中真命题的个数为( )A0B1C2D3二、填空题:本题共4小题,每小题5分,共20分。13设为实数时,实数的值是_14若曲线与直线,所围成的封闭图形的面积为6,则_15学校将从4名男生和4名女生中选出4人分别担任辩论赛中的一、二、三、四辩手,其中男生甲不适合担任一辩手,女生乙不适

4、合担任四辩手现要求:如果男生甲入选,则女生乙必须入选那么不同的组队形式有_种16已知函数设函数有4个不同的零点,则实数的取值范围是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)定义:在等式中,把,叫做三项式的次系数列(如三项式的1次系数列是1,1,1).(1)填空:三项式的2次系数列是_;三项式的3次系数列是_;(2)由杨辉三角数阵表可以得到二项式系数的性质,类似的请用三项式次系数列中的系数表示(无须证明);(3)求的值.18(12分)将函数 的图象向右平移1个单位得到 的图象.(1)若 ,求函数的值域;(2)若在区间 上单调递减,求实数 的取值范围.19(1

5、2分)设函数,曲线在点处的切线方程为(1)求,的值;(2)若,求函数的单调区间;(3)设函数,且在区间内存在单调递减区间,求实数的取值范围20(12分)选修4-4:坐标系与参数方程在直角坐标系中,以坐标原点为极点,以轴正半轴为极轴建立极坐标系,已知曲线的方程为,直线的参数方程为(为参数).(1)将的方程化为直角坐标方程;(2)为上一动点,求到直线的距离的最大值和最小值.21(12分)已知函数.(1)当时,求关于的不等式的解集;(2)若关于的不等式有解,求的取值范围.22(10分)从装有大小相同的2个红球和6个白球的袋子中,每摸出2个球为一次试验,直到摸出的球中有红球(不放回),则实验结束(1)

6、求第一次实验恰好摸到1个红球和1个白球的概率;(2)记实验次数为X,求X的分布列及数学期望参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】分类讨论,利用捆绑法、插空法,即可得出结论.【详解】把空着的2个相邻的停车位看成一个整体,即2辆不同的车可以停进4个停车场,由题意,若2辆不同的车相邻,则有种方法若2辆不同的车不相邻,则利用插空法,2个相邻的停车位空着,利用捆绑法,所以有种方法,不同的停车方法共有:种,综上,共有12种方法,所以B选项是正确的.本题考查排列、组合的综合应用,注意空位是相同的,是关键.2、A【解析】,向

7、量在方向上的投影为,故选A3、C【解析】分析:由题意结合流程图的功能确定判断条件即可.详解:由流程图的功能可知当时,判断条件的结果为是,执行循环,当时,判断条件的结果为否,跳出循环,结合选项可知,应为.本题选择C选项.点睛:本题主要考查流程图的应用,补全流程图的方法等知识,意在考查学生的转化能力和计算求解能力.4、D【解析】求出原函数的导函数,可得当a0时,f(x)在x1取得极小值,不符合;当a0时,令f(x)0,得x1或ln(a),为使f(x)在x1取得极大值,则有ln(a)1,由此求得a的范围得答案【详解】由,得f(x)e2x+(ae)exae(ex+a)(exe)当a0时,ex+a0,由

8、f(x)0,得x1,由f(x)0,得x1f(x)在(,1)上为减函数,在(1,+)上为增函数,则f(x)在x1取得极小值,不符合;当a0时,令f(x)0,得x1或ln(a),为使f(x)在x1取得极大值,则有ln(a)1,aea的取值范围是ae故选:D【点睛】本题考查利用导数研究函数的极值,关键是明确函数单调性与导函数符号间的关系,是中档题5、B【解析】由题设及数学期望的公式可得,则的充要条件是应选答案B6、D【解析】分析:直接根据频率、平均数、独立性检验、方差的基本定义判断即可.详解:因为频率表示可能性大小,错;平均数表示平均水平的高低,错;独立性检验主要指两个变量相关的可能性大小,错;方差

9、表示分散与集中程度以及波动性的大小, 对,故选D.点睛:本题主要考查频率、平均数、独立性检验、方差的基本定义,属于简单题.7、A【解析】先算出,然后求出的单调性即可【详解】由可得当时,单调递增当时,单调递减所以函数在上的极大值为故选:A【点睛】本题考查的是利用导数求函数的极值,较简单.8、A【解析】由题,先根据复数的四则运算直接求出结果即可【详解】由题故选A【点睛】本题考查了复数的运算,属于基础题.9、A【解析】将点化为直角坐标的点,求出过点且平行于轴的直线的方程,再转化为极坐标方程,属于简单题。【详解】因为点的直角坐标为,此点到轴的距离是,则过点且平行于轴的直线的方程是,化为极坐标方程是故选

10、A.【点睛】本题考查极坐标与直角坐标的互化,属于简单题。10、C【解析】分析:根据函数的奇偶性和周期性求出,然后即可得到答案详解:由题意可得:故,周期为故选点睛:本题考查了函数的奇偶性和周期性,运用周期性进行化简,结合已知条件求出结果,本题的解题方法需要掌握。11、D【解析】利用双曲线的一个顶点坐标为,求得的值,即可求得双曲线的方程,得到答案.【详解】由题意,因为双曲线的一个顶点坐标为,所以,所以双曲线的标准方程为,故选D.【点睛】本题主要考查了双曲线的标准方程及其简单的几何性质的应用,着重考查了运算与求解能力,属于基础题.12、C【解析】先写出原命题的逆命题,否命题,再判断真假即可,这里注意

11、的取值,在判断逆否命题的真假时,根据原命题和它的逆否命题具有相同的真假性判断原命题的真假即可.【详解】解:逆命题:设,若,则ab,由可得,能得到ab,所以该命题为真命题;否命题设,若ab,则,由及ab可以得到,所以该命题为真命是题;因为原命题和它的逆否命题具有相同的真假性,所以只需判断原命题的真假即可,当时,所以由ab得到,所以原命题为假命题,即它的逆否命题为假命题;故为真命题的有2个.故选C.【点睛】本题主要考查四种命题真假性的判断问题,由题意写出原命题的逆命题,否命题并判断命题的真假是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】设为实数,可得 或 又因为,故

12、答案为.14、3 .【解析】利用定积分表示图形的面积,从而可建立方程,由此可求a的值【详解】曲线与直线,所围成的封闭图形的面积为6则 解得a=【点晴】注意用积分求面积的区别,图形在x轴下方时,所求积分为负值,图形在x轴上方时所求积分为正值15、【解析】分析:分三种情况讨论,分别求出甲乙都入选、甲不入选,乙入选、甲乙都不入选,,相应的情况不同的组队形式的种数,然后求和即可得出结论.详解:若甲乙都入选,则从其余人中选出人,有种,男生甲不适合担任一辩手,女生乙不适合担任四辩手,则有种,故共有 种;若甲不入选,乙入选,则从其余人中选出人,有种,女生乙不适合担任四辩手,则有种,故共有种;若甲乙都不入选,

13、则从其余6人中选出人,有种,再全排,有种,故共有种,综上所述,共有,故答案为.点睛:本题主要考查分类计数原理与分步计数原理及排列组合的应用,属于难题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.16、,【解析】由题意可得有4个不等实根,作出的图象,通过图象即可得到所求范围【详解】函数有4个不同的零点,即为有4个不等实根,作出的图象,可得时,与的图象有4个交点,故答案为:

14、,【点睛】本题考查函数的零点个数,考查函数与方程思想、数形结合思想,考查逻辑推理能力,求解时注意准确画出函数的图象是关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)50【解析】【试题分析】(1)分别将,把展开进行计算即三项式的次系数列是三项式的次系数列是;(2)运用类比思维的思想可得;(3)由题设中的定义可知表示展开式中的系数,因此可求出解:(1)三项式的次系数列是三项式的次系数列是;(2);(3)表示展开式中的系数,所以18、(1) (2) 【解析】试题分析:(1)整理函数的解析式,令,换元后讨论可得函数的值域是;(2)结合函数的单调性得到关于实数

15、a的不等式组,求解不等式组可得实数 的取值范围是 .试题解析:(1) 令,则,即的值域为.(2),在和上为减函数又在上是减函数,在上恒正,且在上是增函数,即,19、(1);(2)单调递增区间为,单调递减区间为;(3)【解析】试题分析:(1)由切点坐标及切点处的导数值为,即可列出方程组,求解,的值;(2)在的条件下,求解和,即可得到函数的单调区间;(3)在区间内存在单调递减区间,即在区间内有解,由此求解的取值范围试题解析:(1),由题意得,即(2)由(1)得,(),当时,当时,当时,所以函数的单调递增区间为,单调递减区间为(3),依题意,存在,使不等式成立,即时,当且仅当“”,即时等号成立,所以

16、满足要求的的取值范围是考点:利用导数研究函数的单调性及函数的有解问题【方法点晴】本题主要考查了利用导数研究曲线在某点处的切线方程、利用导数研究函数的单调性、求解单调区间和函数的有解问题的求解,着重考查了学生分析问题和解答问题的能力、转化与化归思想的应用,试题有一定难度和也是高考的常考题,属于中档试题,其中第三问的解答是本题的难点,平时注意总计和积累20、(1)(2)最大值是和最小值是.【解析】分析:(1)利用极坐标公式化成直角坐标方程.(2)先求出直线的直角坐标方程为,再利用圆心到直线的距离求到直线的距离的最大值是和最小值是.详解:(1)因为曲线的方程为,则,所以的直角坐标方程为,即.(2)因为直线的参数方程为(为参数),所以直线的直角坐标方程为,因为圆心到直线的距离,则直线与圆相离,所以所求到直线的距离的最大值是和最小值是.点睛:(1)本题主要考查极坐标、参数方程和直角坐标的互化,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2)解答第2问的关键是数形结合.21、(1);(2)【解析】(1)将代入不等式,得到,再通过讨论的范围,即可求出结果;(2)先根据不等式有解,可得只需大于等于的最小值,进而可求出结果.【详解】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论