




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数在区间内既有极大值又有极小值,则实数的取值范围是( )ABCD2已知直线、经过圆的圆心,则的最小值是A9B8C4D23的展开式中只有第5项二项式系数最大,则展开式中含项的系数是( )ABCD4如图,从地面上C,D两点望山顶A,
2、测得它们的仰角分别为45和30,已知米,点C位于BD上,则山高AB等于()A100米B米C米D米5某科研机构为了研究中年人秃头是否与患有心脏病有关,随机调查了一些中年人的情况,具体数据如下表所示:有心脏病无心脏病秃发20300不秃发5450根据表中数据得,由断定秃发与患有心脏病有关,那么这种判断出错的可能性为( )附表:0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828A0.1B0.05C0.01D0.0016复数z满足zi=1+2i(iA第一象限B第二象限C第三象限D第四象限7已知单位向量的夹角为,若,则为( )A等腰三角形
3、B等边三角形C直角三角形D等腰直角三角形8从名学生志愿者中选择名学生参加活动,若采用下面的方法选取:先用简单随机抽样从人中剔除人,剩下的人再按系统抽样的方法抽取人,则在人中,每人入选的概率( )A不全相等B均不相等C都相等,且为D都相等,且为9某工厂生产的零件外直径(单位:)服从正态分布,今从该厂上、下午生产的零件中各随机取出一个,测得其外直径分别为和,则可认为( )A上午生产情况异常,下午生产情况正常B上午生产情况正常,下午生产情况异常C上、下午生产情况均正常D上、下午生产情况均异常10定义“规范01数列”an如下:an共有2m项,其中m项为0,m项为1,且对任意,中0的个数不少于1的个数.
4、若m=4,则不同的“规范01数列”共有A18个B16个C14个D12个11在方程(为参数)所表示的曲线上的点是 ( )A(2,7)BC(1,0)D12函数的定义域为,导函数在内的图象如图所示则函数在内有几个极小值点( )A1B2C3D4二、填空题:本题共4小题,每小题5分,共20分。13从1,2,3,4,5中任取2个不同的数,事件A“取到的2个数之和为偶数”,事件B“取到的2个数均为偶数”,则P(B|A)_.14设,则_.15正四棱柱的底面边长为2,若与底面ABCD所成角为60,则和底面ABCD的距离是_16已知函数是定义在R上的偶函数,满足,若时,则函数的零点个数为_三、解答题:共70分。解
5、答应写出文字说明、证明过程或演算步骤。17(12分)已知集合,集合是集合S的一个含有8个元素的子集.(1)当时,设,写出方程的解();若方程至少有三组不同的解,写出k的所有可能取值;(2)证明:对任意一个X,存在正整数k,使得方程至少有三组不同的解.18(12分)在如图所示的几何体中,平面平面,四边形和四边形都是正方形,且边长为,是的中点.(1)求证:直线平面;(2)求二面角的大小.19(12分)食品安全问题越来越引起人们的重视,农药、化肥的滥用对人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元
6、,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收益P、种黄瓜的年收益Q与投入a(单位:万元)满足P80120.设甲大棚的投入为x(单位:万元),每年两个大棚的总收益为f(x)(单位:万元)(1)求f(50)的值;(2)试问如何安排甲、乙两个大棚的投入,才能使总收益f(x)最大?20(12分)选修4-4:坐标系与参数方程在直角坐标系中,以坐标原点为极点,以轴正半轴为极轴建立极坐标系,已知曲线的方程为,直线的参数方程为(为参数).(1)将的方程化为直角坐标方程;(2)为上一动点,求到直线的距离的最大值和最小值.21(12分) (A)在直角坐标系中,以坐标原点为极点,轴的正
7、半轴为极轴建立极坐标系,曲线的参数方程为(为参数),是曲线上的动点,为线段的中点,设点的轨迹为曲线.(1)求的坐标方程;(2)若射线与曲线异于极点的交点为,与曲线异于极点的交点为,求.(B)设函数.(1)当时,求不等式的解集;(2)对任意,不等式恒成立,求实数的取值范围.22(10分)某学校为了丰富学生的课余生活,以班级为单位组织学生开展古诗词背诵比赛,随机抽取一首,背诵正确加10分,背诵错误减10分,且背诵结果只有“正确”和“错误”两种其中某班级学生背诵正确的概率,记该班级完成首背诵后的总得分为.(1)求且的概率;(2)记,求的分布列及数学期望参考答案一、选择题:本题共12小题,每小题5分,
8、共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分析:先求导得到,转化为方程在(0,2)内有两个相异的实数根,再利用根的分布来解答得解.详解:由题得,原命题等价于方程在(0,2)内有两个相异的实数根,所以.故答案为:A.点睛:(1)本题主要考查导数的应用,考查导数探究函数的极值问题,意在考查学生对这些基础知识的掌握水平和分析推理能力数形结合的思想方法.(2)解答本题有两个关键,其一是转化为方程在(0,2)内有两个相异的实数根,其二是能准确找到方程在(0,2)内有两个相异的实数根的等价不等式组,它涉及到二次方程的根的分布问题.2、A【解析】由圆的一般方程得圆的标准方程
9、为,所以圆心坐标为,由直线过圆心,将圆心坐标代入得,所以,当且仅当时,即时,等号成立,所以最小值为1【详解】圆化成标准方程,得,圆的圆心为,半径直线经过圆心C,即,因此,、,当且仅当时等号成立由此可得当,即且时,的最小值为1故选A【点睛】若圆的一般方程为,则圆心坐标为,半径3、C【解析】根据只有第5项系数最大计算出,再计算展开式中含项的系数【详解】只有第5项系数最大,展开式中含项的系数,系数为故答案选C【点睛】本题考查了二项式定理,意在考查学生的计算能力.4、C【解析】设,中,分别表示,最后表示求解长度.【详解】设,中,中,解得:米.故选C.【点睛】本题考查了解三角形中有关长度的计算,属于基础
10、题型.5、D【解析】根据观测值K2,对照临界值得出结论【详解】由题意,根据附表可得判断秃发与患有心脏病有关出错的可能性为.故选D【点睛】本题考查了独立性检验的应用问题,理解临界值表格是关键,是基础题6、D【解析】利用复数的四则运算法则,可求出z=1+2ii【详解】由题意,z=1+2ii=1+2【点睛】本题考查了复数的四则运算,考查了学生对复数知识的理解和掌握,属于基础题.7、C【解析】,与夹角为,且,为直角三角形,故选C.8、D【解析】根据简单随机抽样与系统抽样方法的定义,结合概率的意义,即可判断出每个人入选的概率.【详解】在系统抽样中,若所给的总体个数不能被样本容量整除时,则要先剔除几个个体
11、,然后再分组,在剔除过程中,每个个体被剔除的概率相等,所以,每个个体被抽到包括两个过程,一是不被剔除,二是选中,这两个过程是相互独立的,因此,每个人入选的概率为.故选:D.【点睛】本题考查简单随机抽样和系统抽样方法的应用,也考查了概率的意义,属于基础题.9、B【解析】根据生产的零件外直径符合正态分布,根据原则,写出零件大多数直径所在的范围,把所得的范围同两个零件的外直径进行比较,得到结论.【详解】因为零件外直径,所以根据原则,在与之外时为异常,因为上、下午生产的零件中随机取出一个,所以下午生产的产品异常,上午的正常,故选B.【点睛】该题考查的是有关正态分布的问题,涉及到的知识点有正态分布的原则
12、,属于简单题目.10、C【解析】试题分析:由题意,得必有,则具体的排法列表如下:,01010011;010101011,共14个【点睛】求解计数问题时,如果遇到情况较为复杂,即分类较多,标准也较多,同时所求计数的结果不太大时,往往利用表格法、树状图将其所有可能一一列举出来,常常会达到岀奇制胜的效果11、D【解析】分析:化参数方程(为参数)为普通方程,将四个点代入验证即可.详解:方程(为参数)消去参数得到将四个点代入验证只有D满足方程.故选D.点睛:本题考查参数分析与普通方程的互化,属基础题12、A【解析】直接利用极小值点两侧函数的单调性是先减后增,对应导函数值是先负后正,再结合图像即可得出结论
13、.【详解】因为极小值点两侧函数的单调性是先减后增,对应导函数值是先负后正,由图得:导函数值先负后正的点只有一个,故函数在内极小值点的个数是1.故选:A【点睛】本题考查了极小值点的概念,需熟记极小值点的定义,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】试题分析:利用互斥事件的概率及古典概型概率计算公式求出事件A的概率,同样利用古典概型概率计算公式求出事件AB的概率,然后直接利用条件概率公式求解解:P(A)=,P(AB)=由条件概率公式得P(B|A)=故答案为点评:本题考查了条件概率与互斥事件的概率,考查了古典概型及其概率计算公式,解答的关键在于对条件概率的理解与公
14、式的运用,属中档题14、【解析】因为,分别令和,即可求得答案.【详解】令.原式化为.令,得,.故答案为:.【点睛】本题主要考查了多项式展开式系数和,解题关键是掌握求多项式系数和的解题方法,考查了分析能力和计算能力,属于中档题.15、.【解析】分析:确定A1C1到底面ABCD的距离为正四棱柱ABCDA1B1C1D1的高,即可求得结论详解:正四棱柱ABCDA1B1C1D1,平面ABCD平面A1B1C1D1,A1C1平面A1B1C1D1,A1C1平面ABCDA1C1到底面ABCD的距离为正四棱柱ABCDA1B1C1D1的高正四棱柱ABCDA1B1C1D1的底面边长为2,AC1与底面ABCD成60角,
15、A1A=2tan60=故答案为 点睛:本题考查线面距离,确定A1C1到底面ABCD的距离为正四棱柱ABCDA1B1C1D1的高是解题的关键如果直线和已知的平面是平行的,可以将直线和平面的距离,转化为直线上一点到平面的距离.16、2【解析】由题意得:的周期为2,且其图象关于轴对称,函数的零点个数即为函数与函数图象的交点个数,然后作出图象即可.【详解】由题意得:的周期为2,且其图象关于轴对称函数的零点个数即为函数与函数图象的交点个数,在同一坐标系中作出两函数的图象如下由图象观察可知,共有两个交点故答案为:2【点睛】一个复杂函数的零点个数问题常常是转化为两个常见函数的交点个数问题.三、解答题:共70
16、分。解答应写出文字说明、证明过程或演算步骤。17、(1)4,6.(2)证明见详解.【解析】(1)根据两个元素之差为3,结合集合的元素,即可求得;根据题意要求,写出集合X中从小到大8个数中所有的差值(限定为正数)的可能,计算每个差值出现的次数,即可求得;(2)采用反证法,假设不存在满足条件的k,根据差数的范围推出矛盾即可.【详解】(1)方程的解有:.以下规定两数的差均为正,则:列出集合X的从小到大8个数中相邻两数的差:1,3,2,4,2,3,1;中间隔一数的两数差(即上一列差数中相邻两数和):4,5,6,6,5,4;中间相隔二数的两数差:6,9,8,9,6;中间相隔三数的两数差:10,11,11
17、,10;中间相隔四数的两数差:12,14,12;中间相隔五数的两数差:15,15;中间相隔六数的两数差:16.这28个差数中,只有4出现3次、6出现4次,其余都不超过2次,所以k的可能取值有4,6.(2)证明:不妨设,记,共13个差数.假设不存在满足条件的k,则这13个数中至多两个1、两个2、两个3、两个4、两个5、两个6,从而 又,这与矛盾.故假设不成立,结论成立.即对任意一个X,存在正整数k,使得方程至少有三组不同的解.【点睛】本题考查集合新定义问题,涉及反证法的使用,本题的关键是要理解题意,小心计算,大胆求证.18、(1)见解析;(2).【解析】试题分析:(1)连结交于,根据平行四边形性
18、质得是中点,再根据三角形中位线性质得,最后根据线面平行判定定理得结论,(2)根据条件建立空间直角坐标系,设立各点坐标,利用方程组解各面法向量,根据向量数量积求夹角,最后根据二面角与向量夹角相等或互补关系求二面角.试题解析:(1)且,与交于点,与交于点平面平面,几何体是三棱柱又平面平面,平面,故几何体是直三棱柱(1)四边形和四边形都是正方形,所以且,所以四边形为矩形;于是,连结交于,连结,是中点,又是的中点,故是三角形D的中位线,注意到在平面外,在平面内,直线平面(2)由于平面 平面,平面,所以.于是,两两垂直.以,所在直线分别为,轴建立空间直角坐标系,因正方形边长为,且为中点,所以,于是,设平
19、面的法向量为则,解之得,同理可得平面的法向量,记二面角的大小为,依题意知,为锐角,即求二面角的大小为19、(1);(2)甲大棚万元,乙大棚万元时,总收益最大, 且最大收益为万元.【解析】试题分析:(1)当甲大棚投入万元,则乙大棚投入万元,此时直接计算即可;(2)列出总收益的函数式得,令,换元将函数转换为关于的二次函数,由二次函数知识可求其最大值及相应的值.试题解析: (1)甲大棚投入50万元,则乙大棚投入150万元,(2),依题得,即,故.令,则,当时,即时,甲大棚投入128万元,乙大棚投入72万元时,总收益最大,且最大收益为282万元.考点:1.函数建模;2.二次函数.20、(1)(2)最大值是和最小值是.【解析】分析:(1)利用极坐标公式化成直角坐标方程.(2)先求出直线的直角坐标方程为,再利用圆心到直线的距离求到直线的距离的最大值是和最小值是.详解:(1)因为曲线的方程为,则,所以的直角坐标方程为,即.(2)因为直线的参数方程为(为参数),所以直线的直角坐标方程为,因为圆心到直线的距离,则直线与圆相离,所以所求到直线的距离的最大值是和最小值是.点睛:(1)本题主要考查极坐标、参数方程和直角坐标的互化,意在考查学生对这些知识的掌握水平和分析推理计算能力.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 风电产品认证服务行业跨境出海战略研究报告
- 高压线束部件专用分组装和下线检测设备企业制定与实施新质生产力战略研究报告
- 采矿、筑路专用手工具行业直播电商战略研究报告
- 钛箔材企业制定与实施新质生产力战略研究报告
- 石英纤维行业跨境出海战略研究报告
- 1200万双高档袜子数字化车间项目可行性研究报告模板-立项备案
- 专著编委合同范例
- 公司和农户合同标准文本
- 关于承揽合同样本
- 豆制品安全监管策略-全面剖析
- 2025年早产儿培训试题及答案
- 江西省鹰潭市2023-2024学年六年级下学期数学期中试卷(含答案)
- 2024年全国职业院校技能大赛中职(食品药品检验赛项)考试题库(含答案)
- 化粪池清掏协议书范本
- 2024-2025学年九年级化学人教版教科书解读
- 奶龙小组汇报模板
- 水利水电工程质量监督工作标准
- 2024年云南省昆明市五华区小升初数学试卷
- 化工原理完整(天大版)课件
- 2025年元明粉项目可行性研究报告
- 艺术色彩解读
评论
0/150
提交评论