版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知全集U=R,集合A=xxx+20,nN*.(1)求a1,a2,a3,并猜想an的通项公式;(2)证明(1)中
2、的猜想.21(12分)设数列的前项的和为,且满足,对,都有 (其中常数),数列满足.(1)求证:数列是等比数列;(2)若,求的值;(3)若,使得,记,求数列的前项的和.22(10分)沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时,如图,某沙漏由上下两个圆锥组成,圆锥的底面直径和高均为8cm,细沙全部在上部时,其高度为圆锥高度的(细管长度忽略不计).(1)如果该沙漏每秒钟漏下0.02cm的沙,则该沙漏的一个沙时为多少秒?(精确到1秒)(2)细沙全部漏入下部后,恰好堆成一个盖
3、住沙漏底部的圆锥形沙堆,求此锥形沙堆的高度. (精确到0.1cm)参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先弄清楚阴影部分集合表示的含义,并解出集合A、B,结合新定义求出阴影部分所表示的集合。【详解】由题意知,阴影部分区域表示的集合S=x集合A=xxx+2AB=-2,1,AB=因此,阴影部分区域所表示的集合为S=-2,-10,1【点睛】本题考查集合的运算、集合的表示法以及集合中的新定义,考查二次不等式以及对数不等式的解法,解题的关键就是要弄清楚Venn图表示的新集合的意义,在计算无限集之间的运算时,可充分利用数
4、轴来理解,考查逻辑推理能力与运算求解能力,属于中等题。2、A【解析】根据三视图可得对应的三棱锥,逐个计算其侧面积和底面积可得其表面积.【详解】将三视图复原后得到的几何体即为如图所示的三棱锥,其中是棱长为4的正方体的顶点,为正方体的底面中心,注意到所以,因此该三棱锥的表面积等于.故选A.【点睛】本题考查三视图,要求根据三视图复原几何体,注意复原前后点、线、面的关系3、B【解析】如图:所以把67化为二进制数为1 000 011(2)故选B.考点:二进制法.4、D【解析】由题意,选一本语文书一本数学书有97=63种,选一本数学书一本英语书有57=35种,选一本语文书一本英语书有95=45种,共有63
5、+45+35=143种选法.故选D.5、C【解析】根据双曲线一个焦点可以求出,再根据一条渐近线的斜率为,可求出的关系,最后联立,解方程求出,求出方程即可.【详解】因为双曲线一个焦点的坐标为,所以,一条渐近线的斜率为,所以有,而,所以,因此有.故选:C【点睛】本题考查了求双曲线方程,考查了双曲线的渐近线方程,考查了数学运算能力.6、C【解析】可用分步计数原理去做,分成两步,第一步安排甲学校共有A61种方法,第二步安排另两所学校有A52【详解】先安排甲学校的参观时间,因为甲学校连续参观两天,可以是周一周二,可以是周二周三,可以是周三周四,可以是周四周五,可以是周五周六,可以是周六周日,所以共有A6
6、1然后在剩下的5天中任选两天有序地安排其余两校参观, 安排方法有A5按照分步计数乘法原理可知共有A61【点睛】本题主要考查分步计数原理在排列组合中的应用,注意分步与分类的区别,对于有限制条件的元素要先安排,再安排其他的元素,本题是一个易错题.7、A【解析】根据对排列公式的认识,进行分析,解答即可【详解】最大数为,共有个自然数连续相乘根据排列公式可得故选【点睛】本题是一道比较基础的题型,主要考查的是排列与组合的理解,掌握排列数的公式是解题的关键8、A【解析】因为,若,则,,故选A.9、A【解析】 ,故选A.10、D【解析】利用函数解析式求得,结合选项中的函数图象,利用排除法即可得结果.【详解】因
7、为函数,所以,选项中的函数图象都不符合,可排除选项,故选D.【点睛】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.11、A【解析】利用等中间值区分各个数值的大小【详解】,故,所以故选A【点睛】本题考查大小比较问题,关键选择中间量和函数的单调性进行比较12、D【解析】先解出复数,求得,然后计算其模长即可.【详解】解:因为,所以所以所以故选D.【点睛】
8、本题考查了复数的综合运算,复数的模长,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】分析:由题意结合所给等式的规律归纳出第个等式即可.详解:首先观察等式左侧的特点:第1个等式开头为1,第2个等式开头为2,第3个等式开头为3,第4个等式开头为4,则第n个等式开头为n,第1个等式左侧有1个数,第2个等式左侧有3个数,第3个等式左侧有5个数,第4个等式左侧有7个数,则第n个等式左侧有2n-1个数,据此可知第n个等式左侧为:,第1个等式右侧为1,第2个等式右侧为9,第3个等式右侧为25,第4个等式右侧为49,则第n个等式右侧为,据此可得第个等式为.点睛:归纳推理是由部分到
9、整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法14、【解析】试题分析:直线的普通方程为,圆C的普通方程为,圆C的圆心到直线的距离,解得.考点:参数方程与普通方程的转化、点到直线的距离.15、.【解析】根据古典概型概率公式结合组合知识可得结论;根据二项分布的方差公式可得结果;根据条件概率进行计算可得到第二次再次取到红球的概率;根据对立事件的概率公式可得结果.【详解】从中任取3个球,恰有一个白球的概率是,故正确;从中有放回的取球次,每次任取一球,取到红球次数,其方差为,故正确;从中不放
10、回的取球次,每次任取一球,则在第一次取到红球后,此时袋中还有个红球个白球,则第二次再次取到红球的概率为,故错误;从中有放回的取球3次,每次任取一球,每次取到红球的概率为,至少有一次取到红球的概率为,故正确,故答案为.【点睛】本题主要考查古典概型概率公式、对立事件及独立事件的概率及分二项分布与条件概率,意在考查综合应用所学知识解决问题的能力,属于中档题.解答这类综合性的概率问题一定要把事件的独立性、互斥性结合起来,要会对一个复杂的随机事件进行分析,也就是说能把一个复杂的事件分成若干个互斥事件的和,再把其中的每个事件拆成若干个相互独立的事件的积,这种把复杂事件转化为简单事件,综合事件转化为单一事件
11、的思想方法在概率计算中特别重要.16、135【解析】分析:个相邻的小岛一共可座桥梁,选座,减去不能彼此连接的即可。详解:个相邻的小岛一共可座桥梁,选座不能彼此连接,共135种。点睛:转化问题为组合问题。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1) z与x具有较强的线性相关性(2)(3)估计年销量为=1千克【解析】由散点图可知z与x对应的散点图基本都在一条直线附近,线性相关性更强根据公式计算出回归方程的系数,即可写出回归方程代入回归方程求出年销量【详解】(1)由散点图知, z与x具有较强的线性相关性.(2)-0.10,15,x+=15-0.10 x.又z=2ln
12、y,y关于x的回归方程为.(3)当定价为150元/千克时,估计年销量为=1千克.【点睛】本题考查了线性回归方程及其应用,只需理清题目中的数据,代入公式即可求出线性回归方程,然后求出年销量,较为基础18、 (1) xy20;(2) 当a0时,函数f(x)无极值;当a0时,函数f(x)在xa处取得极小值aaln a无极大【解析】解:函数f(x)的定义域为(0,),f(x)1.(1)当a2时,f(x)x2ln x,f(x)1(x0),因而f(1)1,f(1)1,所以曲线yf(x)在点A(1,f(1)处的切线方程为y1(x1),即xy20.(2)由f(x)1,x0知:当a0时,f(x)0,函数f(x)
13、为(0,)上的增函数,函数f(x)无极值;当a0时,由f(x)0,解得xa,又当x(0,a)时,f(x)0,从而函数f(x)在xa处取得极小值,且极小值为f(a)aaln a,无极大值综上,当a0时,函数f(x)无极值;当a0时,函数f(x)在xa处取得极小值aaln a,无极大值19、(1)(2)【解析】试题分析:(1)由函数求出导数,由区间上为减函数得到恒成立,通过分离参数,求函数最值得到的范围(2)将不等式恒成立转化为求函数最值问题,首先通过函数导数得到单调区间,进而求出最值,在求单调区间时注意对参数分情况讨论试题解析:(1)因为函数在区间上为减函数,所以对恒成立即对恒成立(2)因为当时
14、,不等式恒成立,即恒成立,设,只需即可由当时,当时,函数在上单调递减,故成立当时,令,因为,所以解得1)当,即时,在区间上,则函数在上单调递增,故在上无最大值,不合题设2)当时,即时,在区间上;在区间上函数在上单调递减,在区间单调递增,同样在无最大值,不满足条件当时,由,故,故函数在上单调递减,故成立综上所述,实数的取值范围是考点:1不等式与函数的转化;2利用导数求函数的单调性最值20、(1)a11;a2;a3;猜想an(nN*)(2)证明见解析【解析】(1)分别令n1、2,通过解一元二次方程结合已知的递推公式可以求出a1,a2,同理求出a3,根据它们的值的特征猜想an的通项公式;(2)利用数
15、学归纳法,通过解一元二次方程可以证明即可.【详解】(1)当n1时,由已知得a11,即当n2时,由已知得a1a21,将a11代入并整理得2a220.a2(a20).同理可得a3.猜想an(nN*).(2)【证明】由(1)知,当n1,2,3时,通项公式成立.假设当nk(k3,kN*)时,通项公式成立,即ak.由于ak1Sk1Sk,将ak代入上式,整理得 2ak120,ak+1,即nk1时通项公式成立.根据可知,对所有nN*,an成立.【点睛】本题考查了通过数列前几项的值,猜想数列的通项公式,并用数学归纳法证明猜想,属于基础题.21、(1)见解析;(2)【解析】分析:(1)因为两式相减,时所以数列是等比数列(2) (3) .所以显然分类讨论即可详解:(1)证明:因为,都有,所以两式相减得,即,当时,所以,又因为,所以,所以数列是常数列, ,所以是以2为首项, 为公比的等比数列.(2)由(1)得. 所以.(3)由(1)得. .因为,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年物业共有部位更新改造合同
- 2024年度乡村太阳能照明项目改造合同2篇
- 2024年水泥电杆产业链上下游企业战略合作合同2篇
- 2024版办公楼空调设备更换及保养服务合同3篇
- 2024年度电子产品研发与生产合作合同6篇
- 2024年度市政基础设施安全生产及文明施工监督合同2篇
- 2024版废塑料瓶回收与环保清洗剂生产合同3篇
- 2024年危险化学品驾驶员劳动合同权益保护措施3篇
- 2024年农业多功能田土承包综合开发合同3篇
- 2024版店面房租赁附带租赁保证金退还细则合同3篇
- GB 8537-2018食品安全国家标准饮用天然矿泉水
- GB 31247-2014电缆及光缆燃烧性能分级
- 斯伦贝谢智能完井工具介绍
- 主要农作物(粮食作物)课件
- 百词斩-定语从句课件-(;)
- 珍惜时间主题班会-做时间的主人课件
- 市政工程施工总体部署
- 护士准入申请表
- 三年级上册英语课件-Unit3 Look at me-人教(PEP) (6)(共30张PPT)
- 糖皮质激素在呼吸科的应用课件
- 合法离婚协议书(2篇)
评论
0/150
提交评论