甘肃省夏河县夏河中学2023学年高考临考冲刺数学试卷(含解析)_第1页
甘肃省夏河县夏河中学2023学年高考临考冲刺数学试卷(含解析)_第2页
甘肃省夏河县夏河中学2023学年高考临考冲刺数学试卷(含解析)_第3页
甘肃省夏河县夏河中学2023学年高考临考冲刺数学试卷(含解析)_第4页
甘肃省夏河县夏河中学2023学年高考临考冲刺数学试卷(含解析)_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年高考数学模拟测试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1 “”是“函数的图象关于直线对称”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件2已知函数,当时,的取值范围为,则实数m的取值范围是( )ABCD3设

2、,则的大小关系是( )ABCD4复数,是虚数单位,则下列结论正确的是AB的共轭复数为C的实部与虚部之和为1D在复平面内的对应点位于第一象限5 “”是“,”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分又不必要条件6已知为等腰直角三角形,为所在平面内一点,且,则( )ABCD7已知平面向量满足,且,则所夹的锐角为( )ABCD08已知集合,则中元素的个数为( )A3B2C1D09平行四边形中,已知,点、分别满足,且,则向量在上的投影为( )A2BCD10已知直线:过双曲线的一个焦点且与其中一条渐近线平行,则双曲线的方程为( )ABCD11如图是计算值的一个程序框图,其中判断框内应填

3、入的条件是( )ABCD12已知关于的方程在区间上有两个根,且,则实数的取值范围是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13设函数,其中若存在唯一的整数使得,则实数的取值范围是_14已知函数恰好有3个不同的零点,则实数的取值范围为_15数列满足递推公式,且,则_.16已知函数,(其中e为自然对数的底数),若关于x的方程恰有5个相异的实根,则实数a的取值范围为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,四边形为菱形,为与的交点,平面.(1)证明:平面平面;(2)若,三棱锥的体积为,求菱形的边长.18(12分)己知函数.(1)当时,

4、求证:;(2)若函数,求证:函数存在极小值.19(12分)已知(1)已知关于的不等式有实数解,求的取值范围;(2)求不等式的解集20(12分)已知集合,.(1)若,则;(2)若,求实数的取值范围.21(12分)在直角坐标系中,点的坐标为,直线的参数方程为(为参数,为常数,且).以直角坐标系的原点为极点,轴的正半轴为极轴,且两个坐标系取相等的长度单位,建立极坐标系,圆的极坐标方程为.设点在圆外.(1)求的取值范围.(2)设直线与圆相交于两点,若,求的值.22(10分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通

5、方程和曲线的直角坐标方程;(2)若点在曲线上,点在曲线上,求的最小值及此时点的坐标.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】先求解函数的图象关于直线对称的等价条件,得到,分析即得解.【题目详解】若函数的图象关于直线对称,则,解得,故“”是“函数的图象关于直线对称”的充分不必要条件故选:A【答案点睛】本题考查了充分不必要条件的判断,考查了学生逻辑推理,概念理解,数学运算的能力,属于基础题.2、C【答案解析】求导分析函数在时的单调性、极值,可得时,满足题意,再在时,求解的x的

6、范围,综合可得结果.【题目详解】当时,令,则;,则,函数在单调递增,在单调递减.函数在处取得极大值为,时,的取值范围为,又当时,令,则,即,综上所述,的取值范围为.故选C.【答案点睛】本题考查了利用导数分析函数值域的方法,考查了分段函数的性质,属于难题.3、A【答案解析】选取中间值和,利用对数函数,和指数函数的单调性即可求解.【题目详解】因为对数函数在上单调递增,所以,因为对数函数在上单调递减,所以,因为指数函数在上单调递增,所以,综上可知,.故选:A【答案点睛】本题考查利用对数函数和指数函数的单调性比较大小;考查逻辑思维能力和知识的综合运用能力;选取合适的中间值是求解本题的关键;属于中档题、

7、常考题型.4、D【答案解析】利用复数的四则运算,求得,在根据复数的模,复数与共轭复数的概念等即可得到结论【题目详解】由题意,则,的共轭复数为,复数的实部与虚部之和为,在复平面内对应点位于第一象限,故选D【答案点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化,其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为5、B【答案解析】先求出满足的值,然后根据充分必要条件的定义判断【题目详解】由得,即, ,因此“”是“,”的必要不充分条件故选:B【答案点睛

8、】本题考查充分必要条件,掌握充分必要条件的定义是解题基础解题时可根据条件与结论中参数的取值范围进行判断6、D【答案解析】以AB,AC分别为x轴和y轴建立坐标系,结合向量的坐标运算,可求得点的坐标,进而求得,由平面向量的数量积可得答案.【题目详解】如图建系,则,由,易得,则.故选:D【答案点睛】本题考查平面向量基本定理的运用、数量积的运算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.7、B【答案解析】根据题意可得,利用向量的数量积即可求解夹角.【题目详解】因为即而所以夹角为故选:B【答案点睛】本题考查了向量数量积求夹角,需掌握向量数量积的定义求法,属于基础题.8、C【答案

9、解析】集合表示半圆上的点,集合表示直线上的点,联立方程组求得方程组解的个数,即为交集中元素的个数.【题目详解】由题可知:集合表示半圆上的点,集合表示直线上的点,联立与,可得,整理得,即,当时,不满足题意;故方程组有唯一的解.故.故选:C.【答案点睛】本题考查集合交集的求解,涉及圆和直线的位置关系的判断,属基础题.9、C【答案解析】将用向量和表示,代入可求出,再利用投影公式可得答案.【题目详解】解:,得,则向量在上的投影为.故选:C.【答案点睛】本题考查向量的几何意义,考查向量的线性运算,将用向量和表示是关键,是基础题.10、A【答案解析】根据直线:过双曲线的一个焦点,得,又和其中一条渐近线平行

10、,得到,再求双曲线方程.【题目详解】因为直线:过双曲线的一个焦点,所以,所以,又和其中一条渐近线平行,所以,所以,所以双曲线方程为.故选:A.【答案点睛】本题主要考查双曲线的几何性质,还考查了运算求解的能力,属于基础题.11、B【答案解析】根据计算结果,可知该循环结构循环了5次;输出S前循环体的n的值为12,k的值为6,进而可得判断框内的不等式【题目详解】因为该程序图是计算值的一个程序框圈所以共循环了5次所以输出S前循环体的n的值为12,k的值为6,即判断框内的不等式应为或 所以选C【答案点睛】本题考查了程序框图的简单应用,根据结果填写判断框,属于基础题12、C【答案解析】先利用三角恒等变换将

11、题中的方程化简,构造新的函数,将方程的解的问题转化为函数图象的交点问题,画出函数图象,再结合,解得的取值范围.【题目详解】由题化简得,作出的图象,又由易知故选:C.【答案点睛】本题考查了三角恒等变换,方程的根的问题,利用数形结合法,求得范围.属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】根据分段函数的解析式画出图像,再根据存在唯一的整数使得数形结合列出临界条件满足的关系式求解即可.【题目详解】解:函数,且画出的图象如下:因为,且存在唯一的整数使得,故与在时无交点,得;又,过定点又由图像可知,若存在唯一的整数使得时,所以,存在唯一的整数使得所以.根据图像可知,当时

12、, 恒成立.综上所述, 存在唯一的整数使得,此时故答案为:【答案点睛】本题主要考查了数形结合分析参数范围的问题,需要根据题意分别分析定点右边的整数点中为满足条件的唯一整数,再数形结合列出时的不等式求的范围.属于难题.14、【答案解析】恰好有3个不同的零点恰有三个根,然后转化成求函数值域即可.【题目详解】解:恰好有3个不同的零点恰有三个根,令,在递增;,递减,递增,时,在有一个零点,在有2个零点;故答案为:.【答案点睛】已知函数的零点个数求参数的取值范围是重点也是难点,这类题一般用分离参数的方法,中档题.15、2020【答案解析】可对左右两端同乘以得,依次写出,累加可得,再由得,代入即可求解【题

13、目详解】左右两端同乘以有,从而,将以上式子累加得.由得.令,有.故答案为:2020【答案点睛】本题考查数列递推式和累加法的应用,属于基础题16、【答案解析】作出图象,求出方程的根,分类讨论的正负,数形结合即可.【题目详解】当时,令,解得,所以当时,则单调递增,当时,则单调递减,当时,单调递减,且,作出函数的图象如图:(1)当时,方程整理得,只有2个根,不满足条件;(2)若,则当时,方程整理得,则,此时各有1解,故当时,方程整理得,有1解同时有2解,即需,因为(2),故此时满足题意;或有2解同时有1解,则需,由(1)可知不成立;或有3解同时有0解,根据图象不存在此种情况,或有0解同时有3解,则,

14、解得,故,(3)若,显然当时,和均无解,当时,和无解,不符合题意综上:的范围是,故答案为:,【答案点睛】本题主要考查了函数零点与函数图象的关系,考查利用导数研究函数的单调性,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)1【答案解析】(1)由菱形的性质和线面垂直的性质,可得平面,再由面面垂直的判定定理,即可得证;(2)设,分别求得,和的长,运用三棱锥的体积公式,计算可得所求值【题目详解】(1)四边形为菱形,平面,又,平面,又平面,平面平面;(2)设,在菱形中,由,可得,在中,可得,由面,

15、知,为直角三角形,可得,三棱锥的体积,菱形的边长为1【答案点睛】本题考查面面垂直的判定,注意运用线面垂直转化,考查三棱锥的体积的求法,考查化简运算能力和推理能力,意在考查学生对这些知识的理解掌握水平18、(1)证明见解析(2)证明见解析【答案解析】(1)求导得,由,且,得到,再利用函数在上单调递减论证.(2)根据题意,求导,令,易知; ,易知当时,;当时,函数单调递增,而,又,由零点存在定理得,使得,使得,有从而得证.【题目详解】(1)依题意,因为,且,故,故函数在上单调递减,故.(2)依题意,令,则;而,可知当时,故函数在上单调递增,故当时,;当时,函数单调递增,而,又,故,使得,故,使得,

16、即函数单调递增,即单调递增;故当时,故函数在上单调递减,在上单调递增,故当时,函数有极小值.【答案点睛】本题考查利用导数研究函数的性质,还考查推理论证能力以及函数与方程思想,属于难题.19、(1);(2).【答案解析】(1)依据能成立问题知,然后利用绝对值三角不等式求出的最小值,即求得的取值范围;(2)按照零点分段法解含有两个绝对值的不等式即可。【题目详解】因为不等式有实数解,所以因为,所以故。当时,所以,故当时,所以,故当时,所以,故综上,原不等式的解集为。【答案点睛】本题主要考查不等式有解问题的解法以及含有两个绝对值的不等式问题的解法,意在考查零点分段法、绝对值三角不等式和转化思想、分类讨

17、论思想的应用。20、(1);(2)【答案解析】(1)将代入可得集合B,解对数不等式可得集合A,由并集运算即可得解.(2)由可知B为A的子集,即;当符合题意,当B不为空集时,由不等式关系即可求得的取值范围.【题目详解】(1)若,则,依题意, 故;(2)因为,故;若,即时,符合题意;若,即时,解得;综上所述,实数的取值范围为.【答案点睛】本题考查了集合的并集运算,由集合的包含关系求参数的取值范围,注意讨论集合是否为空集的情况,属于基础题.21、(1)(2)【答案解析】(1)首先将曲线化为直角坐标方程,由点在圆外,则解得即可;(2)将直线的参数方程代入圆的普通方程,设、对应的参数分别为,列出韦达定理,由及在圆的上方,得,即即可解得;【题目详解】解:(1)曲线的直角坐标方程为.由点在圆外,得点的坐标为,结合,解得.故的取值范围是.(2)由直线的参数方程,得直线过点,倾斜角为,将直线的参数方程代入,并整理得,其中.设、对应的参数分别为,则,.由及在圆的上方,得,即,代入,得,消去,得,结合,解得.故的值是.【答案点睛】本题考查极坐标方程化为直角坐标方程,直线的参数方程的几何意义的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论