




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第九快第九快变1965年,J.WCooley&J.W算直接计算及改进的途x n 为N点有限长1965年,J.WCooley&J.W算直接计算及改进的途x n 为N点有限长序列,其DFTNnk k 0,1,2,N ,nN1xnknk n 0,N ,N差别:只是 WN 的指数符号不同,及常数因子N皆为复数,Xk 也是复数。计算一xn和WnkNXk的值需要N(N-1) 次复数加 法。所以,整个DFTN2 次复数乘法及 x n 差别:只是 WN 的指数符号不同,及常数因子N皆为复数,Xk 也是复数。计算一xn和WnkNXk的值需要N(N-1) 次复数加 法。所以,整个DFTN2 次复数乘法及 x n
2、x n Re jImX x n NNN x n Re x n Im NNj x n Im x n Re N42所以运算一个Xk42所以运算一个Xk4N2N2(N-2(2N-1)乘法N22N-1(4法Wnk nk (1) W nkNnk WnN n kWnk NNNn NkNn Wnk WNNNWN2nk WnN n kWnk NNNn NkNn Wnk WNNNWN2 NNkk W2WNN1222按时间抽取的FFT算x2rx1r N基-Nr,21rx2r1按时间抽取的FFT算x2rx1r N基-Nr,21rx2r1nk 2N X k DFT x n x n Wn N-N- x n Wn n为奇
3、x n Wnk nk n n为偶N N 22r rx 2rW2r+1 2rk 2r+NN N x1 rWx2 rW2rk2rkrN 2Nk2NWrN2 eN 1 N 1 N kkX k k W r r 1N 2N 1N2 eN 1 N 1 N kkX k k W r r 1N 2N 1只计算了N/2X1 krk N 2rk N 22r1rrX2 krk N 2rk N 2x2r+1 2rr注意:x1rx2 r X1k、X2k都是N/2点的r,k 0注意:x1rx2 r X1k、X2k都是N/2点的r,k 0N2 Xk有N点要计算 X k的后半部分点,就得利用周期性(系rkN2 N N 1 N
4、1 rNk N2r r 11N : N +k k2 22N2kN1所对应的X1kX2kk0kN2所对应的X1k: N +k k2 22N2kN1所对应的X1kX2kk0kN2所对应的X1kkkNNkkWkWk2WWW2NNNNNk,N2k N2,kX k W X 1X k2X1kkNNNkX k W 221N2只要求0 N21区间里的所X1kX2k值,即可只要求0 N21区间里的所X1kX2k值,即可求出0 到 N-1区间内的所有X k值kkk W k1kkkk W 1-kk 2N2NN24N 12 2N2所以,二个N/2点DFT2 222NN 2NN24N 12 2N2所以,二个N/2点DF
5、T2 222NN 1 N 2 12 N2 2NNN1 22NNN1 2222N 2 1N+2NN 1次N8x1x1xxxx2k,kX k k W x1x1xxxx2k,kX k k W 21 kX 4 X 7 N,kk W X 21-X(1) -X(3) -因为N2L,所以N/2仍是偶数,还可以把每个N/4x12lx3l Nl0,4lx 2l+114因为N2L,所以N/2仍是偶数,还可以把每个N/4x12lx3l Nl0,4lx 2l+114l0lk2l+1 X2l 2l+1 11N 1N N 2 Wkl xl 3N 4N l0lkk 0,N4 k X3N kN,kkk 413N kN,kkk
6、 413N N 1 k l 33N N 1 k l 44N k对x3(0)= x3(1)= x4(0)= xx4(1)= X2 k也可以进行同样的分X6 kk x3(0)= x3(1)= x4(0)= xx4(1)= X2 k也可以进行同样的分X6 kk WXkkN25N2k 0Xk+kk4WkX425N XN -XN-X5 kl N 4 N 4x2l xlX5 kl N 4 N 4x2l xl 25llX6 k N 4 N 4x2l+1 xl 26l为WkN Nx2rx1rx2r+1 x2 rr,N2x12lx2rx1rx2r+1 x2 rr,N2x12l x3lx12l+1 x4 ll01
7、r=2l13n=26l01r=02n=04r01231357r01230246x2 2l x5 lx2 2l+1x2 2l x5 lx2 2l+1 x6 lN8l01r=2l13n=37l01r=02n=15x3(0)= x3(1)= x4(0)= x1x4(1)= Nx5(0)= x2x5(1)= 1x(0)= x62x6(1)= x3(0)= x3(1)= x4(0)= x1x4(1)= Nx5(0)= x2x5(1)= 1x(0)= x62x6(1)= 23-XX-XX(1W0-0-X1最后剩下的是2点DFTN8N 2X3 k、X4 k、X5 k、X6 k,k 1N k kl 最后剩下的
8、是2点DFTN8N 2X3 k、X4 k、X5 k、X6 k,k 1N k kl l ,444N 0000 W x 2 W x 6 x 2 W x 442N 1101 0 W1 x 2 Wx 6 x 2 W x 442N2e1W0N当N2L时,共有LN/2个蝶形每N/2NL当N2L时,共有LN/2个蝶形每N/2NL NL NmFN222 NL Nlog2N N 2NNlog2 22N/2个蝶形运算(对偶节点。rxxkkj m11NN/2个蝶形运算(对偶节点。rxxkkj m11Nrk xjj m11Nk、j的节点变量进行蝶形k、j 二节点的节点变k、j的节点变量进行蝶形k、j 二节点的节点变,
9、Xkk ,NNr=0,1,N2N输入x 输入x 0, x 4, x 2, x 7 N=8为例,n2n1n02 把 xnn的奇偶进行分组:n为偶数组(n0 0)n为奇数组(n01)x0,x2,x4,x6和x1,x3,x5,x7第二次分组则依据 n10014223641556370014223641556377变址WN的距离2m1)m(kWN的距离2m1)m(kX (k)(k)mNX (k2m1)(k(k)mN0N因子为W0,W NNW0,W1,W2,WNNNNd.第L级运算有N/22L1 个蝶形类型,蝶距为WNd.第L级运算有N/22L1 个蝶形类型,蝶距为WN/WW,旋转因子个数也是NNNa.
10、把k值表示成L位的二进制数(N2L 按频率抽取的FFT算法NN/N/按频率抽取的FFT算法NN/N/n0 x(n N /2)W(nN/2)kX(k)NNNn0n0N/ x(n) x(n N /knk,.2NNn0N2 NNN NXk xn1 x nk,2N2 NNN NXk xn1 x nk,2N当k 为偶数时,1k 1;当k 为奇数时 因此k 的奇偶可Xk 分为两部分k 2rr = 0,1, k 2r 2则:X 2rN2 1 Nx n 2nr xnW2n N2 1 N x n nr xnW2n 1N n2r1 X2r 1xn n W2n1N xn n nnr N 21N n2r1 X2r 1
11、xn n W2n1N xn n nnr N 2N2nx n xn xn N 12n 0, N 2x2 nxnn WN2N2 X 2rx1 nWnr N 2Nn 0,1,rN22 X 2r+1x2 nWnr 2n W0N-N-W0N-N-W2N-W3N-W0W2W0-W3W2-W0W2W0-W3W2-N-W0N-W2-xn xn 2nxx n x xn xn 2nxx n x nN NWxn22W-频蝶形运算流按频FFT流图N/2XmkXm1kXm1。 rj N/2XmkXm1kXm1。 rj k Xj mm1m1N蝶形运算二节点的“距离”及WNXm k Xm1k Xm1k+N 2m 2LMN
12、Xk+Wmmmm22m2m1(左移m-1位第一列有N/2种,W 0,W1,W 2,2,WN 22logIDFT的快速计算方法N1kxnIDFTXkIDFT的快速计算方法N1kxnIDFTXk Nn0DFTx n 而X x n Nnk -nk WN,乘以常数1/N即可从xnxnDIT的IFFTNx(n) 1 x(k)wnkNNk1N1xNx(n) 1 x(k)wnkNNk1N1x(n) x (k)wx (kN NNkx k 取共 得到的结果在取1轭乘以 即到x(n)N1W021W021W01W2221W021W021W01W222W0121W11W0221W21W0221W31W21W0222T
13、heChirpTransformXTheChirpTransformX(ejsequenceLetxn|Nk 0 k,k,M1 and the frequency increment canbechosen(forDFT,0=0,M N, 2 /NX(ejk ) xnejkn, k ,M 1n0with W defined as W eNNX(eNX(ejk ) xnejknWn0ToexpressX(ejk ) asank 1n2 k2 (kn)2 N)xne j0nWn2/2Wk2/2W(kn)2/2 X(en0gnxnej0nWn2 /2X(ejk )Wk2 /2(gnW(kn)2 /2
14、), k ,M 1n0Nif k nif k n, thenweNX(ejn )Wn2 /2(gkW(nk)2 /2), n ,M 1n0X(ejn )Wn2/2 gn:Wn2 /2, n,M 1nn2/2(N 1)nM 1hn9.5任意基算n2L,n9.5任意基算n2L,nnL1nL210i0,1,1ni 0orn2L2n2nL210n n 2L1 n 2L22L201(2)对于r进制,nrL rL皆为大于1(2)对于r进制,nrL rL皆为大于1nrnrL2nrL210nnrL1nrL2rL201 1, nL1nL210LnLL1L n0 r1r2 rL1n1 r1r2 rL2 n0 ,r
15、L 1nL ,n0 ,rL 1nL ,r11n1 ,N 351ni ,i1,i ,1 nnrn n10100,1,2,3, 6 511 ;250202N 44N 44nn1rn0 4n1 n0 n1,n0 0,1,2,43232;7 4139.5任意基FFT算9.5任意基FFT算N 2LNp1p2q1 p2N 令nn1n0,0n1 q1 Np1p2q1 p2N 令nn1n0,0n1 q1 1,0n0 p1 1Nxn p nk x nx(n)ww110N0Nn0n00n1n0n0k,0kN1n n nwx n w0100N0N1kxn p kxn p xn0qw1是 1点DFT100kn0 表示
16、分组序号;“1” 表示抽选1x0 k 即为第一次抽选第n0 组的q点DFT1子二N 的快速算NX(k)x(n二N 的快速算NX(k)x(n)w,k ,N 1Nn0设NNr1r2 0,1,.,r11nnr n ,1 00,1,.,r 1 2N 21,k,k1 0,1,.,r2 1k k r 1 00,1,.,r 1 1nkr2进制数进制数nkr2进制数进制数n0为末位n1为其进k0为末位,k1为其进Nr1r2420,1,2,n2n n ,10 n n0,2n0,4n0,6n00,1,2,., r41行的数k0 0,1,2,N r r 2k0 0,1,2,N r r 2k 4k 2110 0100
17、1123245367kk0,kk0,4k00,1,2,.,k0 r2 21 4n2n1 (,.,Nk 2k 10kk XkXk1q1 k0k0 0 p1 0 k0q1 kk XkXk1q1 k0k0 0 p1 0 k0q1 xp k q kk q knWN0n0 n k n x p n WW0 0 N110n0 0n0 knk k WW01 00N10实质上,Np1q1点的DFTp1 q1 knn010 x实质上,Np1q1点的DFTp1 q1 knn010 x n 每隔p点抽选一点所得的序列的q 2k,复数乘法次数为q1 当n0q组k 0p1 1。计算n而次010Xk的N个值需要Np1 1次乘法C1 Np1 1 p 2q1 p2p3pq1 p2q2C2 N 1 p 1 p 2C2 N 1 p 1 p 11122N 1 N p 1 pp 12Cr Np11Np21Npr Np1p2pr r当p1 pprN = pr基pFFTCr pNrprNrp1 Np1logp 9-8222n0rrr(3r(3r 2)kX(k) x(3rx(3rx(n)w9999222r9-8222n0rr
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025担保合同标准模板:能源产业融资担保协议
- 2025版闭口采购金融服务合同
- 二零二五版电力设施智能化改造设计及报批专项合同
- 2025年度建筑材料租赁与合同解除程序合同
- 2025版电子行业供应链信息安全保密协议范本
- 电信行业个人担当作为问题及整改措施
- 高中班主任校园诚信建设职责
- 2025年度新能源汽车二手车居间服务合同协议范本
- 市政道路工程项目八大员职责
- 2025版存量房屋买卖合同范文:全流程指导
- 广元城市IP打造营销规划方案
- 儿童意外伤害防治课件
- 钢结构安装安全操作规程
- 选修课调酒的考试题及答案
- 2026版高三一轮总复习(数学)第二章 第2课时 函数的单调性与最值 课件
- GB/T 15057.2-1994化工用石灰石中氧化钙和氧化镁含量的测定
- 中国滤泡性淋巴瘤诊治指南培训课件
- 湖南省乡镇卫生院街道社区卫生服务中心地址医疗机构名单目录
- 饲料分析与检测复习题
- 基础会计课件(完整版)
- 建设工程施工合同示范文本GF-2013-0201)协议书、通用条款、专用条款
评论
0/150
提交评论