




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知中内角所对应的边依次为,若,则的面积为( )ABCD2根据如图所示的程序框图,当输入的值为3时,输出的值等于( )A1BCD3已知角的终边与单位圆交于点,则等于( )A
2、BCD4已知集合,则集合的真子集的个数是( )A8B7C4D35在中,分别为所对的边,若函数有极值点,则的范围是( )ABCD6若、满足约束条件,则的最大值为( )ABCD7设函数恰有两个极值点,则实数的取值范围是( )ABCD8已知边长为4的菱形,为的中点,为平面内一点,若,则( )A16B14C12D89若某几何体的三视图如图所示,则该几何体的表面积为( )A240B264C274D28210已知定义在上的偶函数满足,且在区间上是减函数,令,则的大小关系为( )ABCD11函数的图象大致为( )ABCD12已知集合,ByN|yx1,xA,则AB( )A1,0,1,2,3B1,0,1,2C0
3、,1,2Dx1x2二、填空题:本题共4小题,每小题5分,共20分。13设满足约束条件,则的取值范围是_.14如图,在矩形中,是的中点,将,分别沿折起,使得平面平面,平面平面,则所得几何体的外接球的体积为_.15若为假,则实数的取值范围为_.16戊戌年结束,己亥年伊始,小康,小梁,小谭,小杨,小刘,小林六人分成四组,其中两个组各2人,另两个组各1人,分别奔赴四所不同的学校参加演讲,则不同的分配方案有_种(用数字作答),三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知非零实数满足 (1)求证:; (2)是否存在实数,使得恒成立?若存在,求出实数的取值范围; 若不存在
4、,请说明理由18(12分)秉持“绿水青山就是金山银山”的生态文明发展理念,为推动新能源汽车产业迅速发展,有必要调查研究新能源汽车市场的生产与销售.下图是我国某地区年至年新能源汽车的销量(单位:万台)按季度(一年四个季度)统计制成的频率分布直方图. (1)求直方图中的值,并估计销量的中位数;(2)请根据频率分布直方图估计新能源汽车平均每个季度的销售量(同一组数据用该组中间值代表),并以此预计年的销售量.19(12分)已知函数.()求的值;()若,且,求的值.20(12分)已知的三个内角所对的边分别为,向量,且.(1)求角的大小;(2)若,求的值21(12分)已知数列是等差数列,前项和为,且,(1
5、)求(2)设,求数列的前项和22(10分)下表是某公司2018年512月份研发费用(百万元)和产品销量(万台)的具体数据:月 份56789101112研发费用(百万元)2361021131518产品销量(万台)1122.563.53.54.5()根据数据可知与之间存在线性相关关系,求出与的线性回归方程(系数精确到0.01);()该公司制定了如下奖励制度:以(单位:万台)表示日销售,当时,不设奖;当时,每位员工每日奖励200元;当时,每位员工每日奖励300元;当时,每位员工每日奖励400元.现已知该公司某月份日销售(万台)服从正态分布(其中是2018年5-12月产品销售平均数的二十分之一),请你
6、估计每位员工该月(按30天计算)获得奖励金额总数大约多少元. 参考数据:,参考公式:相关系数,其回归直线中的,若随机变量服从正态分布,则,.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】由余弦定理可得,结合可得a,b,再利用面积公式计算即可.【详解】由余弦定理,得,由,解得,所以,.故选:A.【点睛】本题考查利用余弦定理解三角形,考查学生的基本计算能力,是一道容易题.2C【解析】根据程序图,当x0继续运行,x=1-2=-10,程序运行结束,得,故选C【点睛】本题考查程序框图,是基础题3B【解析】先由三角函数的定义求出,
7、再由二倍角公式可求.【详解】解:角的终边与单位圆交于点,故选:B【点睛】考查三角函数的定义和二倍角公式,是基础题.4D【解析】转化条件得,利用元素个数为n的集合真子集个数为个即可得解.【详解】由题意得,集合的真子集的个数为个.故选:D.【点睛】本题考查了集合的化简和运算,考查了集合真子集个数问题,属于基础题.5D【解析】试题分析:由已知可得有两个不等实根.考点:1、余弦定理;2、函数的极值.【方法点晴】本题考查余弦定理,函数的极值,涉及函数与方程思想思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型. 首先利用转化化归思想将原命题转化为有两
8、个不等实根,从而可得.6C【解析】作出不等式组所表示的可行域,平移直线,找出直线在轴上的截距最大时对应的最优解,代入目标函数计算即可.【详解】作出满足约束条件的可行域如图阴影部分(包括边界)所示由,得,平移直线,当直线经过点时,该直线在轴上的截距最大,此时取最大值,即.故选:C.【点睛】本题考查简单的线性规划问题,考查线性目标函数的最值,一般利用平移直线的方法找到最优解,考查数形结合思想的应用,属于基础题.7C【解析】恰有两个极值点,则恰有两个不同的解,求出可确定是它的一个解,另一个解由方程确定,令通过导数判断函数值域求出方程有一个不是1的解时t应满足的条件.【详解】由题意知函数的定义域为,.
9、因为恰有两个极值点,所以恰有两个不同的解,显然是它的一个解,另一个解由方程确定,且这个解不等于1.令,则,所以函数在上单调递增,从而,且.所以,当且时,恰有两个极值点,即实数的取值范围是.故选:C【点睛】本题考查利用导数研究函数的单调性与极值,函数与方程的应用,属于中档题.8B【解析】取中点,可确定;根据平面向量线性运算和数量积的运算法则可求得,利用可求得结果.【详解】取中点,连接,即.,则.故选:.【点睛】本题考查平面向量数量积的求解问题,涉及到平面向量的线性运算,关键是能够将所求向量进行拆解,进而利用平面向量数量积的运算性质进行求解.9B【解析】将三视图还原成几何体,然后分别求出各个面的面
10、积,得到答案.【详解】由三视图可得,该几何体的直观图如图所示,延长交于点,其中,所以表面积.故选B项.【点睛】本题考查三视图还原几何体,求组合体的表面积,属于中档题10C【解析】可设,根据在上为偶函数及便可得到:,可设,且,根据在上是减函数便可得出,从而得出在上单调递增,再根据对数的运算得到、的大小关系,从而得到的大小关系.【详解】解:因为,即,又,设,根据条件,;若,且,则:;在上是减函数;在上是增函数;所以,故选:C【点睛】考查偶函数的定义,减函数及增函数的定义,根据单调性定义判断一个函数单调性的方法和过程:设,通过条件比较与,函数的单调性的应用,属于中档题.11A【解析】用偶函数的图象关
11、于轴对称排除,用排除,用排除.故只能选.【详解】因为 ,所以函数为偶函数,图象关于轴对称,故可以排除;因为,故排除,因为由图象知,排除.故选:A【点睛】本题考查了根据函数的性质,辨析函数的图像,排除法,属于中档题.12A【解析】解出集合A和B即可求得两个集合的并集.【详解】集合xZ|2x31,0,1,2,3,ByN|yx1,xA2,1,0,1,2,AB2,1,0,1,2,3故选:A【点睛】此题考查求集合的并集,关键在于准确求解不等式,根据描述法表示的集合,准确写出集合中的元素.二、填空题:本题共4小题,每小题5分,共20分。13【解析】作出可行域,将目标函数整理为可视为可行解与的斜率,则由图可
12、知或,分别计算出与,再由不等式的简单性质即可求得答案.【详解】作出满足约束条件的可行域,显然当时,z=0;当时将目标函数整理为可视为可行解与的斜率,则由图可知或显然,联立,所以则或,故或综上所述,故答案为:【点睛】本题考查分式型目标函数的线性规划问题,属于简单题.14【解析】根据题意,画出空间几何体,设的中点分别为,并连接,利用面面垂直的性质及所给线段关系,可知几何体的外接球的球心为,即可求得其外接球的体积.【详解】由题可得,均为等腰直角三角形,如图所示,设的中点分别为,连接,则,.因为平面平面,平面平面,所以平面,平面,易得,则几何体的外接球的球心为,半径,所以几何体的外接球的体积为.故答案
13、为:.【点睛】本题考查了空间几何体的综合应用,折叠后空间几何体的线面位置关系应用,空间几何体外接球的性质及体积求法,属于中档题.15【解析】由为假,可知为真,所以对任意实数恒成立,求出的最小值,令即可.【详解】因为为假,则其否定为真,即为真,所以对任意实数恒成立,所以.又,当且仅当,即时,等号成立,所以.故答案为:.【点睛】本题考查全称命题与特称命题间的关系的应用,利用参变分离是解决本题的关键,属于中档题.161080【解析】按照先分组,再分配的分式,先将六人分成四组,其中两个组各2人,另两个组各1人有种,再分别奔赴四所不同的学校参加演讲有种,然后用分步计数原理求解.【详解】将六人分成四组,其
14、中两个组各2人,另两个组各1人有种,再分别奔赴四所不同的学校参加演讲有种,则不同的分配方案有种.故答案为:1080【点睛】本题主要考查分组分配问题,还考查了理解辨析的能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)见解析(2)存在,【解析】(1)利用作差法即可证出.(2)将不等式通分化简可得,讨论或,分离参数,利用基本不等式即可求解.【详解】又即即当时,即恒成立(当且仅当时取等号),故当时恒成立(当且仅当时取等号),故综上,【点睛】本题考查了作差法证明不等式、基本不等式求最值、考查了分类讨论的思想,属于基础题.18(1),中位数为;(2)新能源汽车平均
15、每个季度的销售量为万台,以此预计年的销售量约为万台.【解析】(1)根据频率分布直方图中所有矩形面积之和为可计算出的值,利用中位数左边的矩形面积之和为可求得销量的中位数的值;(2)利用每个矩形底边的中点值乘以相应矩形的面积,相加可得出销量的平均数,由此可预计年的销售量.【详解】(1)由于频率分布直方图的所有矩形面积之和为,则,解得,由于,因此,销量的中位数为;(2)由频率分布直方图可知,新能源汽车平均每个季度的销售量为(万台),由此预测年的销售量为万台.【点睛】本题考查利用频率分布直方图求参数、中位数以及平均数的计算,考查计算能力,属于基础题.19();().【解析】()直接代入再由诱导公式计算
16、可得;()先得到,再根据利用两角差的余弦公式计算可得【详解】解:();()因为所以,由得,又因为,故,所以,所以.【点睛】本题考查了三角函数中的恒等变换应用,属于中档题20(1)(2)【解析】利用平面向量数量积的坐标表示和二倍角的余弦公式得到关于的方程,解方程即可求解;由知,在中利用余弦定理得到关于的方程,与方程联立求出,进而求出,利用两角差的正弦公式求解即可.【详解】由题意得,,由二倍角的余弦公式可得, , 又因为,所以,解得或,. 在中,由余弦定理得,即 又因为,把代入整理得,解得,所以为等边三角形, ,即.【点睛】本题考查利用平面向量数量积的坐标表示和余弦定理及二倍角的余弦公式解三角形;熟练掌握余弦的二倍角公式和余弦定理是求解本题的关键;属于中档题、常考题型.21 (1) (2) 【解析】(1)由数列是等差数列,所以,解得,又由,解得, 即可求得数列的通项公式; (2)由(1)得,利用乘公比错位相减,即可求解数列的前n项和【详解】(1)由题意,数列是等差数列,所以,又,由,得,所以,解得, 所以数列的通项公式为 (2)由(1)得,两式相减得,即【点睛】本题主要考查等差的通项公式、以及“错位相减法”求和的应用,此类题目是数列问题中的常见题型,解答中确定通项公式是基础,准确计算求和是关键,易错点是在“错位”之后求和时,弄错等比数列的项数,能较好的考查考生的数形结
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 装箱运输合同样本
- 分包单位的合同范本
- 代理销售中介合同范本
- 农民集资建房合同范本
- 弘扬中华优良传统文化过中国人自己的传统节日单元整体教学设计
- 做好班主任 做一名有智慧的班主任 校园廉洁 14
- 2025家庭居室设计施工一体化合同
- 2025机电安装工程合同乙种本范本
- 2025YY年房屋租赁合同协议
- 语文核心素养的培育知到课后答案智慧树章节测试答案2025年春湖南师范大学
- 第四课 人民民主专政的社会主义国家 课件-高考政治一轮复习统编版必修三政治与法治
- 2025年郑州黄河护理职业学院单招职业适应性考试题库带答案
- (完整版)特殊教育与随班就读
- 旋流风口RA-N3选型计算表格
- 《VB程序结构基础》课件教程
- 个人房屋租赁合同标准版范本
- DBJ50-T-157-2022房屋建筑和市政基础设施工程施工现场从业人员配备标准
- 2024年中考模拟试卷地理(湖北卷)
- 沙塘湾二级渔港防波堤工程施工组织设计
- 大学生心理健康教育知到智慧树章节测试课后答案2024年秋长春医学高等专科学校
- 慢肾风中医辨证施护
评论
0/150
提交评论