版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知随机变量服从正态分布,( )ABCD2高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称
2、为高斯函数,例如:,已知函数(),则函数的值域为( )ABCD3已知函数且,则实数的取值范围是( )ABCD4 “角谷猜想”的内容是:对于任意一个大于1的整数,如果为偶数就除以2,如果是奇数,就将其乘3再加1,执行如图所示的程序框图,若输入,则输出的( )A6B7C8D95若的展开式中二项式系数和为256,则二项式展开式中有理项系数之和为( )A85B84C57D566在中,“”是“为钝角三角形”的( )A充分非必要条件B必要非充分条件C充要条件D既不充分也不必要条件7运行如图所示的程序框图,若输出的值为300,则判断框中可以填( )ABCD8如图,正方体的底面与正四面体的底面在同一平面上,且
3、,若正方体的六个面所在的平面与直线相交的平面个数分别记为,则下列结论正确的是()ABCD9已知复数z满足(其中i为虚数单位),则复数z的虚部是( )AB1CDi10在钝角中,角所对的边分别为,为钝角,若,则的最大值为( )ABC1D11阅读如图所示的程序框图,运行相应的程序,则输出的结果为( )AB6CD12在等差数列中,若为前项和,则的值是( )A156B124C136D180二、填空题:本题共4小题,每小题5分,共20分。13已知,为正实数,且,则的最小值为_.14已知是抛物线上一点,是圆关于直线对称的曲线上任意一点,则的最小值为_15函数的定义域为_.16若展开式中的常数项为240,则实
4、数的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知,均为正数,且.证明:(1);(2).18(12分)在直角坐标系中,直线的参数方程为(为参数)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(1)求和的直角坐标方程;(2)已知为曲线上的一个动点,求线段的中点到直线的最大距离19(12分)已知数列满足,且,成等比数列(1)求证:数列是等差数列,并求数列的通项公式;(2)记数列的前n项和为,求数列的前n项和20(12分)在中,角,所对的边分别为,已知,角为锐角,的面积为.(1)求角的大小;(2)求的值.21(12分)已知椭圆:()的离心
5、率为,且椭圆的一个焦点与抛物线的焦点重合.过点的直线交椭圆于,两点,为坐标原点.(1)若直线过椭圆的上顶点,求的面积;(2)若,分别为椭圆的左、右顶点,直线,的斜率分别为,求的值.22(10分)已知函数.(1)讨论函数单调性;(2)当时,求证:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】利用正态分布密度曲线的对称性可得出,进而可得出结果.【详解】,所以,.故选:B.【点睛】本题考查利用正态分布密度曲线的对称性求概率,属于基础题.2B【解析】利用换元法化简解析式为二次函数的形式,根据二次函数的性质求得的取值范围,由此
6、求得的值域.【详解】因为(),所以,令(),则(),函数的对称轴方程为,所以,所以,所以的值域为.故选:B【点睛】本小题考查函数的定义域与值域等基础知识,考查学生分析问题,解决问题的能力,运算求解能力,转化与化归思想,换元思想,分类讨论和应用意识.3B【解析】构造函数,判断出的单调性和奇偶性,由此求得不等式的解集.【详解】构造函数,由解得,所以的定义域为,且,所以为奇函数,而,所以在定义域上为增函数,且.由得,即,所以.故选:B【点睛】本小题主要考查利用函数的单调性和奇偶性解不等式,属于中档题.4B【解析】模拟程序运行,观察变量值可得结论【详解】循环前,循环时:,不满足条件;,不满足条件;,不
7、满足条件;,不满足条件;,不满足条件;,满足条件,退出循环,输出故选:B【点睛】本题考查程序框图,考查循环结构,解题时可模拟程序运行,观察变量值,从而得出结论5A【解析】先求,再确定展开式中的有理项,最后求系数之和.【详解】解:的展开式中二项式系数和为256故,要求展开式中的有理项,则则二项式展开式中有理项系数之和为:故选:A【点睛】考查二项式的二项式系数及展开式中有理项系数的确定,基础题.6C【解析】分析:从两个方向去判断,先看能推出三角形的形状是锐角三角形,而非钝角三角形,从而得到充分性不成立,再看当三角形是钝角三角形时,也推不出成立,从而必要性也不满足,从而选出正确的结果.详解:由题意可
8、得,在中,因为,所以,因为,所以,结合三角形内角的条件,故A,B同为锐角,因为,所以,即,所以,因此,所以是锐角三角形,不是钝角三角形,所以充分性不满足,反之,若是钝角三角形,也推不出“,故必要性不成立,所以为既不充分也不必要条件,故选D.点睛:该题考查的是有关充分必要条件的判断问题,在解题的过程中,需要用到不等式的等价转化,余弦的和角公式,诱导公式等,需要明确对应此类问题的解题步骤,以及三角形形状对应的特征.7B【解析】由,则输出为300,即可得出判断框的答案【详解】由,则输出的值为300,故判断框中应填?故选:【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正
9、确的结论,是基础题8A【解析】根据题意,画出几何位置图形,由图形的位置关系分别求得的值,即可比较各选项.【详解】如下图所示,平面,从而平面,易知与正方体的其余四个面所在平面均相交,平面,平面,且与正方体的其余四个面所在平面均相交,结合四个选项可知,只有正确.故选:A.【点睛】本题考查了空间几何体中直线与平面位置关系的判断与综合应用,对空间想象能力要求较高,属于中档题.9A【解析】由虚数单位i的运算性质可得,则答案可求.【详解】解:,则化为,z的虚部为.故选:A.【点睛】本题考查了虚数单位i的运算性质、复数的概念,属于基础题.10B【解析】首先由正弦定理将边化角可得,即可得到,再求出,最后根据求
10、出的最大值;【详解】解:因为,所以因为所以,即,时故选:【点睛】本题考查正弦定理的应用,余弦函数的性质的应用,属于中档题.11D【解析】用列举法,通过循环过程直接得出与的值,得到时退出循环,即可求得.【详解】执行程序框图,可得,满足条件,满足条件,满足条件,由题意,此时应该不满足条件,退出循环,输出S的值为.故选D【点睛】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的与的值是解题的关键,难度较易.12A【解析】因为,可得,根据等差数列前项和,即可求得答案.【详解】,.故选:A.【点睛】本题主要考查了求等差数列前项和,解题关键是掌握等差中项定义和等差数列前项和公式,考查了分析
11、能力和计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】由,为正实数,且,可知,于是,可得,再利用基本不等式即可得出结果.【详解】解:,为正实数,且,可知,.当且仅当时取等号.的最小值为.故答案为:.【点睛】本题考查了基本不等式的性质应用,恰当变形是解题的关键,属于中档题.14【解析】由题意求出圆的对称圆的圆心坐标,求出对称圆的圆坐标到抛物线上的点的距离的最小值,减去半径即可得到的最小值.【详解】假设圆心关于直线对称的点为,则有,解方程组可得,所以曲线的方程为,圆心为,设,则,又,所以,即,所以,故答案为:.【点睛】该题考查的是有关动点距离的最小值问题,涉及到的
12、知识点有点关于直线的对称点,点与圆上点的距离的最小值为到圆心的距离减半径,属于中档题目.15【解析】由题意得,解得定义域为163【解析】依题意可得二项式展开式的常数项为即可得到方程,解得即可;【详解】解:二项式的展开式中的常数项为,解得.故答案为:【点睛】本题考查二项式展开式中常数项的计算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)见解析(2)见解析【解析】(1)由进行变换,得到,两边开方并化简,证得不等式成立.(2)将化为,然后利用基本不等式,证得不等式成立.【详解】(1),两边加上得,即,当且仅当时取等号,.(2).当且仅当时取等号.【点睛】本小题
13、主要考查利用基本不等式证明不等式成立,考查化归与转化的数学思想方法,属于中档题.18(1)(2)最大距离为【解析】(1)直接利用极坐标方程和参数方程的公式计算得到答案.(2)曲线的参数方程为,设,计算点到直线的距离公式得到答案.【详解】(1)由,得,则曲线的直角坐标方程为,即直线的直角坐标方程为(2)可知曲线的参数方程为(为参数),设,则到直线的距离为,所以线段的中点到直线的最大距离为【点睛】本题考查了极坐标方程,参数方程,距离的最值问题,意在考查学生的计算能力.19(1)见解析;(2)【解析】(1)因为,所以,所以,所以数列是等差数列, 设数列的公差为,由可得,因为成等比数列,所以,所以,所
14、以,因为,所以, 解得(舍去)或,所以,所以 (2)由(1)知,所以, 所以20(1);(2)7.【解析】分析:(1)由三角形面积公式和已知条件求得sinA的值,进而求得A;(2)利用余弦定理公式和(1)中求得的A求得a详解:(1) ,为锐角,;(2)由余弦定理得: .点睛:本题主要考查正弦定理边角互化及余弦定理的应用与特殊角的三角函数,属于简单题. 对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.21(1)(2)【解析】(1)根据抛物线的焦点求得椭圆的焦点,由此求
15、得,结合椭圆离心率求得,进而求得,从而求得椭圆的标准方程,求得椭圆上顶点的坐标,由此求得直线的方程.联立直线的方程和椭圆方程,求得两点的纵坐标,由此求得的面积.(2)求得两点的坐标,设出直线的方程,联立直线的方程和椭圆方程,写出韦达定理,由此求得的值,根据在椭圆上求得的值,由此求得的值.【详解】(1)因为抛物线的焦点坐标为,所以椭圆的右焦点的坐标为,所以,因为椭圆的离心率为,所以,解得,所以,故椭圆的标准方程为.其上顶点为,所以直线:,联立,消去整理得,解得,所以的面积.(2)由题知,设,.由题还可知,直线的斜率不为0,故可设:.由,消去,得,所以所以,又因为点在椭圆上,所以,所以.【点睛】本小题主要考查抛物线的焦点,椭圆的标准方程和几何性质、直线与椭圆,三角形的面积等基础知识,考查推理论证能力、运算求解能力,化归与转化思想、数形结合思想、函数与方程思想.22(1)见解析(2)见解析【解析】(1)根据的导函数进行分类讨论单调性(2)欲证,只需证,构造函数,证明,这时需
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度物业服务合同:物业公司与业主委员会关于住宅小区物业管理的协议
- 2024年度企业宣传与推广合同
- 2024年度安全生产许可证代办服务合同
- 2024年度城市轨道交通设备制造合同
- 2024年度智能硬件设备众筹与销售合同
- 2024年度出租车行业保险服务合作合同
- 2024年度版权作品租赁与传播合同
- 2024年度智能停车系统开发合同:车库管理系统设计与实施协议
- 2024年度技术咨询服务合同协议书
- 2022北交所与专精特新企业投资价值研究报告
- (部编版)统编版小学语文教材目录(一至六年级上册下册齐全)
- 幼儿园科学观察型案例
- 施工现场供排水管道及设施安全保护协议
- 2021-2022新教材浙科版生物学必修1课件:-细胞凋亡是编程性死亡
- 贵州省普通高中学校建设规范指导手册
- 跨文化交际课堂作业题及答案
- 皮带输送机技术要求
- 八年级上册道法:第八课第1课时国家好大家才会好(21张)ppt课件
- 经济法基础教案
- 医药行业销售人员薪酬激励方案研究
- 三相鼠笼异步电动机的工作特性实验报告
评论
0/150
提交评论