数列证明题型总结(教师版)附答案_第1页
数列证明题型总结(教师版)附答案_第2页
数列证明题型总结(教师版)附答案_第3页
数列证明题型总结(教师版)附答案_第4页
数列证明题型总结(教师版)附答案_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上精选优质文档-倾情为你奉上专心-专注-专业专心-专注-专业精选优质文档-倾情为你奉上专心-专注-专业一、解答题 :1在数列eq blcrc(avs4alco1(an)中,a11,an12an2n.()设bneq f(an,2n1),证明:数列eq blcrc(avs4alco1(bn)是等差数列;()求数列eq blcrc(avs4alco1(an)的前n项的和Sn.【答案】()因为bn1bneq f(an1,2n)eq f(an,2n1)eq f(an12an,2n)eq f(2n,2n)1所以数列bn为等差数列()因为bnb1(n1)1n所以ann2n1所以Sn1

2、20221n2n12Sn121222n2n两式相减得Sn(n1)2n12在数列an中,a1eq f(1,2),an1eq f(1,2)aneq f(1,2n1).()设bn2nan,证明:数列bn是等差数列;()求数列an的前n项和Sn.【答案】()由an1eq f(1,2)aneq f(1,2n1),得2n1an12nan1bn1bn1,则bn是首项b11,公差为1的等差数列故bnn,aneq f(n,2n).()Sn1eq f(1,2)2eq f(1,22)3eq f(1,23)(n1)eq f(1,2n1)neq f(1,2n)eq f(1,2)Sn1eq f(1,22)2eq f(1,

3、23)3eq f(1,24)(n1)eq f(1,2n)neq f(1,2n1)两式相减,得:eq f(1,2)Sneq f(1,2)eq f(1,22)eq f(1,23)eq f(1,2n)eq f(n,2n1)eq f(f(1,2)(1f(1,2n)),1f(1,2)eq f(n,2n1)1eq f(1,2n)eq f(n,2n1)Sn2eq f(1,2n1)eq f(n,2n)3数列an的各项均为正数,前n项和为Sn,且满足4Sn(an1)2(nN*)()证明:数列an是等差数列,并求出其通项公式an;()设bnan2an(nN*),求数列bn的前n项和Tn.【答案】()n1时,4a1

4、(a11)2aeq oal(2,1)2a110,即a11n2时,4an4Sn4Sn1(an1)2(an11)2aeq oal(2,n)aeq oal(2,n1)2an2an1aeq oal(2,n)aeq oal(2,n1)2an2an10(anan1)(anan1)20an0anan12故数列an是首项为a11,公差为d2的等差数列,且an2n1(nN*)()由()知bnan2an(2n1)22n1Tnb1b2bn(121)(323)(2n1)22n113(2n1)(212322n1)n2eq f(2(122n),14)eq f(22n1,3)n2eq f(2,3)eq f(22n13n22

5、,3)4数列an的各项均为正数,前n项和为Sn,且满足2eq r(Sn)an1(nN*)()证明:数列an是等差数列,并求出其通项公式an;()设bnan2n(nN*),求数列bn的前n项和Tn.【答案】()由2eq r(Sn)an1(nN*)可以得到4Sn(an1)2(nN*) n1时,4a1(a11)2aeq oal(2,1)2a110,即a11n2时,4an4Sn4Sn1(an1)2(an11)2aeq oal(2,n)aeq oal(2,n1)2an2an1aeq oal(2,n)aeq oal(2,n1)2an2an10(anan1)(anan1)20an0anan12故数列an是首

6、项为a11,公差为d2的等差数列,且an2n1(nN*)()由()知bnan2n(2n1)2nTn(121)(322)(2n3)2n1(2n1)2n则2Tn(122)(323)(2n3)2n(2n1)2n1两式相减得:Tn(121)(222)(22n)(2n1)2n12eq f(2(12n),12)2(2n1)2n1(32n)2n16Tn(2n3)2n16(或Tn(4n6)2n6)5已知数列an,其前n项和为Sneq f(3,2)n2eq f(7,2)n(nN*)()求a1,a2;()求数列an的通项公式,并证明数列an是等差数列;()如果数列bn满足anlog2bn,请证明数列bn是等比数列

7、,并求其前n项和Tn.【答案】()a1S15,a1a2S2eq f(3,2)22eq f(7,2)213,解得a28.()当n2时,anSnSn1eq f(3,2)n2(n1)2eq f(7,2)n(n1)eq f(3,2)(2n1)eq f(7,2)3n2.又a15满足an3n2,an3n2(nN*)anan13n23(n1)23(n2,nN*),数列an是以5为首项,3为公差的等差数列()由已知得bn2an(nN*),eq f(bn1,bn)eq f(2nn1,2an)2an1an238(nN*),又b12a132,数列bn是以32为首项,8为公比的等比数列Tneq f(32(18n),1

8、8)eq f(32,7)(8n1)6已知函数f(x)eq f(2x,x2),数列an满足:a1eq f(4,3),an1f(an)()求证:数列eq blcrc(avs4alco1(f(1,an)为等差数列,并求数列an的通项公式;()记Sna1a2a2a3anan1,求证:Sneq f(8,3).【答案】证明:()an1f(an)eq f(2an,an2),eq f(1,an1)eq f(1,an)eq f(1,2),即eq f(1,an1)eq f(1,an)eq f(1,2),则eq blcrc(avs4alco1(f(1,an)成等差数列,所以eq f(1,an)eq f(1,a1)(

9、n1)eq f(1,2)eq f(3,4)(n1)eq f(1,2)eq f(2n1,4),则aneq f(4,2n1).()anan1eq f(4,2n1)eq f(4,2n3)8eq blc(rc)(avs4alco1(f(1,2n1)f(1,2n3),Sna1a2a2a3anan18eq blc(rc)(avs4alco1(f(1,3)f(1,5)f(1,5)f(1,7)f(1,2n1)f(1,2n3)8eq blc(rc)(avs4alco1(f(1,3)f(1,2n3)eq f(8,3).7已知数列an的前三项依次为2,8,24,且an2an1是等比数列()证明eq blcrc(av

10、s4alco1(f(an,2n)是等差数列;()试求数列an的前n项和Sn的公式【答案】()a22a14,a32a28,an2an1是以2为公比的等比数列an2an142n22n.等式两边同除以2n,得eq f(an,2n)eq f(an1,2n1)1,eq blcrc(avs4alco1(f(an,2n)是等差数列()根据()可知eq f(an,2n)eq f(a1,2)(n1)1n,ann2n.Sn12222323n2n,2Sn122223(n1)2nn2n1.得:Sn222232nn2n1eq f(2(12n),12)n2n12n12n2n1,Sn(n1)2n12.8已知数列an的各项为

11、正数,前n项和为Sn,且满足:Sneq f(1,2)eq blc(rc)(avs4alco1(anf(1,an)(nN*)()证明:数列Seq oal(2,n)是等差数列;()设Tneq f(1,2)Seq oal(2,1)eq f(1,22)Seq oal(2,2)eq f(1,23)Seq oal(2,3)eq f(1,2n)Seq oal(2,n),求Tn.【答案】()证明:当n1时,a1S1,又Sneq f(1,2)eq blc(rc)(avs4alco1(anf(1,an)(nN*),S1eq f(1,2)eq blc(rc)(avs4alco1(S1f(1,S1),解得S11.当n

12、2时,anSnSn1,Sneq f(1,2)eq blc(rc)(avs4alco1(SnSn1f(1,SnSn1),即SnSn1eq f(1,SnSn1),化简得Seq oal(2,n)Seq oal(2,n1)1,Seq oal(2,n)是以Seq oal(2,1)1为首项,1为公差的等差数列()由()知Seq oal(2,n)n,Tneq f(1,2)Seq oal(2,1)eq f(1,22)Seq oal(2,2)eq f(1,2n)Seq oal(2,n),即Tn1eq f(1,2)2eq f(1,22)(n1)eq f(1,2n1)neq f(1,2n).eq f(1,2)得eq

13、 f(1,2)Tn1eq f(1,22)(n1)eq f(1,2n)neq f(1,2n1).得eq f(1,2)Tneq f(1,2)eq f(1,22)eq f(1,2n)neq f(1,2n1)eq f(f(1,2)blcrc(avs4alco1(1f(1,2n),1f(1,2)neq f(1,2n1)1eq f(1,2n)neq f(1,2n1)1eq f(n2,2n1),Tn2eq f(n2,2n).9数列an满足a11,an1eq r(f(1,aeq oal(2,n)4)1(nN*),记Snaeq oal(2,1)aeq oal(2,2)aeq oal(2,n).()证明:eq b

14、lcrc(avs4alco1(f(1,aeq oal(2,n)是等差数列;()对任意的nN*,如果S2n1Sneq f(m,30)恒成立,求正整数m的最小值【答案】()证明:eq f(1,aeq oal(2,n1)eq f(1,aeq oal(2,n)4eq f(1,aeq oal(2,n)eq f(1,aeq oal(2,1)(n1)4eq f(1,aeq oal(2,n)4n3,即eq blcrc(avs4alco1(f(1,aeq oal(2,n)是等差数列()令g(n)S2n1Sneq f(1,4n1)eq f(1,4n5)eq f(1,8n1).g(n1)g(n)0,g(n)在nN*

15、上单调递减,g(n)maxg(1)eq f(14,45).eq f(14,45)eq f(m,30)恒成立meq f(28,3),又mN,正整数m的最小值为10.10已知数列an是首项a1eq f(1,r(3,3),公比为eq f(1,r(3,3)的等比数列,设bn15log3ant,常数tN*.()求证:bn为等差数列;()设数列cn满足cnanbn,是否存在正整数k,使ck1,ck,ck2成等比数列?若存在,求k,t的值;若不存在,请说明理由【答案】()证明:an3eq f(n,3),bn1bn15log3eq blc(rc)(avs4alco1(f(an1,an)5,bn是首项为b1t5

16、,公差为5的等差数列()cn(5nt)3eq f(n,3),令5ntx,则cnxeq f(n,3),cn1(x5)3eq f(n1,3),cn2(x10)3eq f(n2,3),若ceq oal(2,k)cn1cn2,则(x3eq f(n,3)2(x5)3eq f(n1,3)(x10)3eq f(n2,3),化简得2x215x500,解得x10或eq f(5,2)(舍),进而求得n1,t5,综上,存在n1,t5适合题意11在数列 an中,a11,an12an2n1.()设bnan1an2,(nN*),证明:数列bn是等比数列;()求数列an的通项an.【答案】()由已知an12an2n1得an

17、22an12n3,得an2an12an12an2设an2an1c2(an1anc)展开与上式对比,得c2因此,有an2an122(an1an2)由bnan1an2,得bn12bn,由a11,a22a135,得b1a2a126,故数列bn是首项为6,公比为2的等比数列()由()知,bn62n132n则an1anbn232n2,所以ana1(a2a1)(a3a2)(anan1)1(3212)(3222)(32n12)13(222232n1)2(n1)an32n2n3,当n1时,a1321213651,故a1也满足上式故数列an的通项为an32n2n3(nN*)12在数列an中,a1eq f(1,6

18、),aneq f(1,2)an1eq f(1,2)eq f(1,3n)(nN*且n2)()证明:aneq f(1,3n)是等比数列;()求数列an的通项公式;()设Sn为数列eq blcrc(avs4alco1(an)的前n项和,求证Sneq f(1,2).【答案】()由已知,得eq f(an1f(1,3n1),anf(1,3n)eq f((f(1,2)anf(1,2)f(1,3n1))f(1,3n1),anf(1,3n)eq f(1,2)eq blcrc(avs4alco1(anf(1,3n)是等比数列()设Ananeq f(1,3n),则A1a11eq f(1,6)eq f(1,3)eq

19、f(1,2),且qeq f(1,2)则An(eq f(1,2)n,aneq f(1,3n)eq f(1,2n),可得aneq f(1,2n)eq f(1,3n)()Sn(eq f(1,21)eq f(1,31)(eq f(1,22)eq f(1,32)(eq f(1,2n)eq f(1,3n)eq f(f(1,2)(1f(1,2n)),1f(1,2)eq f(f(1,3)(1f(1,3n)),1f(1,3)eq f(1,2)eq f(1,2n)eq f(1,2)eq f(1,3n)eq f(1,2)eq f(23n2n,26n)eq f(1,2)13已知数列an满足a12,an12ann1(n

20、N*)()证明:数列ann是等比数列,并求出数列an的通项公式;()数列bn满足:bneq f(n,2an2n)(nN*),求数列bn的前n项和Sn.【答案】()证法一:由an12ann1可得an1(n1)2(ann),又a12,则a111,数列ann是以a111为首项,且公比为2的等比数列,则ann12n1,an2n1n.证法二:eq f(an1(n1),ann)eq f(2ann1(n1),ann)eq f(2an2n,ann)2,又a12,则a111,数列ann是以a111为首项,且公比为2的等比数列,则ann12n1,an2n1n.()bneq f(n,2an2n),bneq f(n,

21、2an2n)eq f(n,2n)Snb1b2bneq f(1,2)2(eq f(1,2)2n(eq f(1,2)neq f(1,2)Sn(eq f(1,2)22(eq f(1,2)3(n1)(eq f(1,2)nn(eq f(1,2)n1由,得eq f(1,2)Sneq f(1,2)(eq f(1,2)2(eq f(1,2)3(eq f(1,2)nn(eq f(1,2)n1eq f(f(1,2)1(f(1,2))n,1f(1,2)n(eq f(1,2)n11(n2)(eq f(1,2)n1,Sn2(n2)(eq f(1,2)n.14在数列an中,a11,2nan1(n1)an,nN*.()设

22、bneq f(an,n),证明:数列bn是等比数列;()求数列an的前n项和Sn.【答案】()因为eq f(bn1,bn)eq f(an1,n1)eq f(n,an)eq f(1,2),所以bn是首项为1,公比为eq f(1,2)的等比数列()由()可知eq f(an,n)eq f(1,2n1),即aneq f(n,2n1),Sn1eq f(2,2)eq f(3,22)eq f(4,23)eq f(n,2n1),上式两边乘以eq f(1,2),得eq f(1,2)Sneq f(1,2)eq f(2,22)eq f(3,23)eq f(n1,2n1)eq f(n,2n),两式相减,得eq f(1

23、,2)Sn1eq f(1,2)eq f(1,22)eq f(1,23)eq f(1,2n1)eq f(n,2n),eq f(1,2)Sn2eq f(2n,2n),所以Sn4eq f(2n,2n1)15设数列an的前n项和为Sn,且Sn(1)an,其中1,0.()证明:数列an是等比数列;()设数列an的公比qf(),数列bn满足b1eq f(1,2),bnf(bn1)(nN*,n2),求数列bn的通项公式【答案】()由Sn(1)anSn1(1)an1(n2),相减得:ananan1,eq f(an,an1)eq f(,1)(n2),数列an是等比数列()f()eq f(,1),bneq f(b

24、n,1bn1)eq f(1,bn)eq f(1,bn1)1,eq f(1,bn)是首项为eq f(1,b1)2,公差为1的等差数列;eq f(1,bn)2(n1)n1,bneq f(1,n1).16在等差数列an中,a1030,a2050.()求数列an的通项an;()令bn2an10,证明:数列bn为等比数列;()求数列nbn的前n项和Tn.【答案】()由ana1(n1)d,a1030,a2050,得方程组eq blc(avs4alco1(a19d30,a119d50),解得a112,d2.an12(n1)22n10.()由()得bn2an1022n101022n4n,eq f(bn1,bn

25、)eq f(4n1,4n)4bn是首项是4,公比q4的等比数列()由nbnn4n得:Tn14242n4n4Tn142(n1)4nn4n1相减可得:3Tn4424nn4n1eq f(4(14n),3)n4n1Tneq f((3n1)4n14,9)17已知an是等差数列,其前n项和为Sn,已知a311,S9153,()求数列an的通项公式;()设anlog2bn,证明bn是等比数列,并求其前n项和Tn.【答案】() eq blc(avs4alco1(a12d11,9a1f(98,2)d153)解得:d3,a15, an3n2 ()bn2an,eq f(bn1,bn)eq f(2an1,2an)2a

26、n1an238,bn是公比为8的等比数列又b12a132, Tneq f(32(18n),18)eq f(32,7)(8n1)18在数列an中,a13,an2an1n2(n2,且nN*)()求a2,a3的值;()证明:数列ann是等比数列,并求an的通项公式;()求数列an的前n项和Sn.【答案】()a13,an2an1n2(n2,且nN*),a22a1226,a32a23213.()证明:eq f(ann,an1(n1))eq f((2an1n2)n,an1n1)eq f(2an12n2,an1n1)2,数列ann是首项为a114,公比为2的等比数列ann42n12n1,即an2n1n,an

27、的通项公式为an2n1n(nN*)()an的通项公式为an2n1n(nN*),Sn(2223242n1)(123n)eq f(22(12n),12)eq f(n(n1),2)2n2eq f(n2n8,2).19已知数列an满足a12,an13an2(nN*)()求证:数列an1是等比数列;()求数列an的通项公式【答案】()证明:由an13an2得an113(an1),从而eq f(an11,an1)3,即数列an1是首项为3,公比为3的等比数列()由()知,an133n13nan3n1.20已知数列an满足a12,an14an2n1,Sn为an的前n项和()设bnan2n,证明数列bn是等比

28、数列,并求数列an的通项公式;()设Tneq f(2n,Sn),n1,2,3,证明:eq isu(i1,n,T)ieq f(3,2).【答案】()因为bn1an12n1(4an2n1)2n14(an2n)4bn,且b1a124,所以bn是以4为首项,以q4为公比的等比数列所以bnb1qn14n,所以an4n2n.()Sna1a2an(4424n)(2222n)eq f(4,3)(4n1)2(2n1)eq f(1,3)(2n1)232n12eq f(1,3)(2n11)(2n12)eq f(2,3)(2n11)(2n1),所以Tneq f(2n,Sn)eq f(3,2)eq f(2n,(2n11

29、)(2n1))eq f(3,2)eq blc(rc)(avs4alco1(f(1,2n1)f(1,2n11),因此eq isu(i1,n,T)ieq f(3,2)eq isu(i1,n, )eq blc(rc)(avs4alco1(f(1,2n1)f(1,2n11)eq f(3,2)eq blc(rc)(avs4alco1(f(1,211)f(1,2n11)eq f(2 011,4 026)的n的最小值【答案】()证明:b1S1320,Sn1SnSn3n,即Sn12Sn3n,eq f(bn1,bn)eq f(Sn13n1,Sn3n)eq f(2Sn3n13n,Sn3n)20,所以bn是等比数列

30、()由()知bn2n,则cneq f(1,log2bn1log2bn2)eq f(1,(n1)(n2))eq f(1,n1)eq f(1,n2),Tneq f(1,2)eq f(1,n2),Tneq f(1,2)eq f(1,n2)eq f(2 011,4 026),n2 011,即nmin2 012.25已知数列an满足:a11,an1eq f(an,an2)(nN*)()求证:数列eq blcrc(avs4alco1(f(1,an)1)是等比数列;()若eq f(bn1,n)eq f(1,an)1,且数列bn是单调递增数列,求实数的取值范围【答案】()证明:eq f(1,an1)1eq f

31、(2,an),eq f(1,an1)12eq blc(rc)(avs4alco1(f(1,an)1),eq f(1,a1)120,所以数列eq blcrc(avs4alco1(f(1,an)1)是等比数列()eq f(1,an)12n,aneq f(1,2n1),eq f(bn1,n)eq f(1,an)12n,bn12n(n),bn2n1(n1)(n2),b1适合,所以bn2n1(n1)(nN*),由bn1bn得2n1(n1)2n(n),n2,(n2)min3,的取值范围为|2 010的n的最小值【答案】()an13an2an1(n2),(an1an)2(anan1)(n2)a12,a24,

32、a2a120,anan10,故数列an1an是首项为2,公比为2的等比数列,an1an(a2a1)2n12n,an(anan1)(an1an2)(an2an3)(a2a1)a12n12n22n3212eq f(2(12n1),12)22n(n2)又a12满足上式,an2n(nN*)()由()知bneq f(2(an1),an)2eq blc(rc)(avs4alco1(1f(1,an)2eq blc(rc)(avs4alco1(1f(1,2n)2eq f(1,2n1),Sn2neq blc(rc)(avs4alco1(1f(1,21)f(1,22)f(1,2n1)2neq f(1f(1,2n)

33、,1f(1,2)2n2eq blc(rc)(avs4alco1(1f(1,2n)2n2eq f(1,2n1).由Sn2 010得:2n2eq f(1,2n1)2 010,即neq f(1,2n)1 006,因为n为正整数,所以n的最小值为1 006.27已知数列an的前n项和为Sn,满足Sn+2n=2an(I)证明:数列an+2是等比数列,并求数列an的通项公式an;()若数列bn满足bn=log2(an+2),求数列的前n项和Tn【答案】(I)证明:由Sn+2n=2an,得Sn=2an2n,当nN*时,Sn=2an2n,当n=1时,S1=2a12,则a1=2,当n2时,Sn1=2an12(n1),得an=2an2an12,即an=2an1+2,an+2=2(an

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论