版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 高二数学知识点及公式整理 只有高效的(学习(方法),才可以很快的把握学问的重难点。有效的读书方式依据规律把握方法,不要一来就死记硬背,先找规律,再记忆,然后再学习,就能很快的把握学问。以下是我给大家整理的(高二数学)学问点及公式整理,盼望大家能够喜爱! 高二数学学问点及公式整理1 1、向量的加法 向量的加法满意平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x,y+y)。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。 2、向量的减法 假如a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0
2、AB-AC=CB.即“共同起点,指向被减” a=(x,y)b=(x,y)则a-b=(x-x,y-y). 4、数乘向量 实数和向量a的乘积是一个向量,记作a,且a=a。 当0时,a与a同方向; 当0时,a与a反方向; 当=0时,a=0,方向任意。 当a=0时,对于任意实数,都有a=0。 注:按定义知,假如a=0,那么=0或a=0。 实数叫做向量a的系数,乘数向量a的几何意义就是将表示向量a的有向线段伸长或压缩。 当1时,表示向量a的有向线段在原方向(0)或反方向(0)上伸长为原来的倍; 当1时,表示向量a的有向线段在原方向(0)或反方向(0)上缩短为原来的倍。 数与向量的乘法满意下面的运算律 结
3、合律:(a)b=(ab)=(ab)。 向量对于数的安排律(第一安排律):(+)a=a+a. 数对于向量的安排律(其次安排律):(a+b)=a+b. 数乘向量的消去律:假如实数0且a=b,那么a=b。假如a0且a=a,那么=。 3、向量的的数量积 定义:两个非零向量的夹角记为a,b,且a,b0,。 定义:两个向量的数量积(内积、点积)是一个数量,记作ab。若a、b不共线,则ab=|a|b|cosa,b;若a、b共线,则ab=+-ab。 向量的数量积的坐标表示:ab=xx+yy。 向量的数量积的运算率 ab=ba(交换率); (a+b)c=ac+bc(安排率); 向量的数量积的性质 aa=|a|的
4、平方。 ab=ab=0。 |ab|a|b|。 高二数学学问点及公式整理2 1.万能公式令tan(a/2)=tsina=2t/(1+t2)cosa=(1-t2)/(1+t2)tana=2t/(1-t2) 2.帮助角公式asint+bcost=(a2+b2)(1/2)sin(t+r)cosr=a/(a2+b2)(1/2)sinr=b/(a2+b2)(1/2)tanr=b/a 3.三倍角公式sin(3a)=3sina-4(sina)3cos(3a)=4(cosa)3-3cosatan(3a)=3tana-(tana)3/1-3(tana2)sina_cosb=sin(a+b)+sin(a-b)/2c
5、osa_sinb=sin(a+b)-sin(a-b)/2cosa_cosb=cos(a+b)+cos(a-b)/2sina_sinb=-cos(a+b)-cos(a-b)/2sina+sinb=2sin(a+b)/2cos(a-b)/2sina-sinb=2sin(a-b)/2cos(a+b)/2cosa+cosb=2cos(a+b)/2cos(a-b)/2cosa-cosb=-2sin(a+b)/2sin(a-b)/2 高二数学学问点及公式整理3 1.计数原理学问点 乘法原理:N=n1n2n3nM(分步)加法原理:N=n1+n2+n3+nM(分类) 2.排列(有序)与组合(无序) Anm=n
6、(n-1)(n-2)(n-3)-(n-m+1)=n!/(n-m)!Ann=n! Cnm=n!/(n-m)!m! Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?k!=(k+1)!-k! 3.排列组合混合题的解题原则:先选后排,先分再排 排列组合题的主要解题方法:优先法:以元素为主,应先满意特别元素的要求,再考虑其他元素.以位置为主考虑,即先满意特别位置的要求,再考虑其他位置. 捆绑法(集团元素法,把某些必需在一起的元素视为一个整体考虑) 插空法(解决相间问题)间接法和去杂法等等 在求解排列与组合应用问题时,应留意: (1)把详细问题转化或归结为排列或组合问题; (2)通过分析确定运用分
7、类计数原理还是分步计数原理; (3)分析题目条件,避开“选取”时重复和遗漏; (4)列出式子计算和作答. 常常运用的数学思想是: 分类争论思想;转化思想;对称思想. 4.二项式定理学问点: (a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+Cnran-rbr+-+Cnn-1abn-1+Cnnbn 特殊地:(1+x)n=1+Cn1x+Cn2x2+Cnrxr+Cnnxn 主要性质和主要结论:对称性Cnm=Cnn-m 二项式系数在中间。(要留意n为奇数还是偶数,答案是中间一项还是中间两项) 全部二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4+Cnr+Cnn=2n 奇数项二项式系数的和=偶数项而是系数的和 Cn0+Cn2+Cn4+Cn6+Cn8+=Cn1+Cn3+Cn5+Cn7+Cn9+=2n-1 通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。 5.二项式定理的应用:解决有关近似计算、整除问题,运用二项绽开式定理并且结合放缩法证明与指数有关的不等式。 6.留意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区分,在求某几项的系数的和时留意赋值法的应用。 高二数学学问点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年产xx再生铝冶炼项目建议书
- 原味蛋项目可行性研究报告
- 区域地理 世界地理 北美和美国
- 夫妻沙盘心理治疗
- 大班生成活动教案:会飞和不会飞
- 胸椎前路手术
- Perforce:2024游戏技术现状报告
- 小班社会教案及教学反思《抱一抱》
- 肺源性心脏病护理病例讨论
- 一年级下册数学教案-4.1.3 100以内数的认识∣人教新课标
- 互联网产品运营实战手册
- 江苏省环保集团有限公司招聘笔试题库2024
- 大学生国家安全教育学习通超星期末考试答案章节答案2024年
- 教师资格考试高中化学面试试题与参考答案(2025年)
- 老年心房颤动诊治中国专家共识(2024)解读
- 新高考背景下2025届高三历史一轮复习策略讲座
- 个人无人机租赁协议书范本
- 陆上风电施工危险源辨识、评价、控制措施清单
- 2024届上海高考语文课内古诗文背诵默写篇目(精校版)
- 中国在线监测设备行业市场供需态势及未来趋势研判报告
- 休闲体育专业人才培养方案
评论
0/150
提交评论