高三数学课堂讲解的重要知识点_第1页
高三数学课堂讲解的重要知识点_第2页
高三数学课堂讲解的重要知识点_第3页
高三数学课堂讲解的重要知识点_第4页
高三数学课堂讲解的重要知识点_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 高三数学课堂讲解的重要知识点 对于一看就会的题型直接pass掉,做精题,精做题。不要什么都做没有选择,没有方案,假如每一题都做不仅会铺张时间而且也提高不了多少。以下是我给大家整理的(高三数学)课堂讲解的重要学问点,盼望大家能够喜爱! 高三数学课堂讲解的重要学问点1 1.满意二元一次不等式(组)的x和y的取值构成有序数对(x,y),称为二元一次不等式(组)的一个解,全部这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集。 2.二元一次不等式(组)的每一个解(x,y)作为点的坐标对应平面上的一个点,二元一次不等式(组)的解集对应平面直角坐标系中的一个半平面(平面区域)。 3.直线l

2、:Ax+By+C=0(A、B不全为零)把坐标平面划分成两部分,其中一部分(半个平面)对应二元一次不等式Ax+By+C0(或0),另一部分对应二元一次不等式Ax+By+C0(或0)。 4.已知平面区域,用不等式(组)表示它,其(方法)是:在全部直线外任取一点(如本题的原点(0,0),将其坐标代入Ax+By+C,推断正负就可以确定相应不等式。 5.一个二元一次不等式表示的平面区域是相应直线划分开的半个平面,一般用特别点代入二元一次不等式检验就可以判定,当直线不过原点时常选原点检验,当直线过原点时,常选(1,0)或(0,1)代入检验,二元一次不等式组表示的平面区域是它的各个不等式所表示的平面区域的公

3、共部分,留意边界是实线还是虚线的含义。“线定界,点定域”。 6.满意二元一次不等式(组)的整数x和y的取值构成的有序数对(x,y),称为这个二元一次不等式(组)的一个解。全部整数解对应的点称为整点(也叫格点),它们都在这个二元一次不等式(组)表示的平面区域内。 7.画二元一次不等式Ax+By+C0所表示的平面区域时,应把边界画成实线,画二元一次不等式Ax+By+C0所表示的平面区域时,应把边界画成虚线。 8.若点P(x0,y0)与点P1(x1,y1)在直线l:Ax+By+C=0的同侧,则Ax0+By0+C与Ax1+Byl+C符号相同;若点P(x0,y0)与点P1(x1,y1)在直线l:Ax+B

4、y+C=0的两侧,则Ax0+By0+C与Ax1+Byl+C符号相反。 9.从实际问题中抽象出二元一次不等式(组)的步骤是: (1)依据题意,设出变量; (2)分析问题中的变量,并依据各个不等关系列出常量与变量x,y之间的不等式; (3)把各个不等式连同变量x,y有意义的实际范围合在一起,组成不等式组。 高三数学课堂讲解的重要学问点2 定义: 形如y=xa(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。 定义域和值域: 当a为不同的数值时,幂函数的定义域的不怜悯况如下:假如a为任意实数,则函数的定义域为大于0的全部实数;假如a为负数,则x确定不能为0,不过这时函数的定

5、义域还必需根据q的奇偶性来确定,即假如同时q为偶数,则x不能小于0,这时函数的定义域为大于0的全部实数;假如同时q为奇数,则函数的定义域为不等于0的全部实数。当x为不同的数值时,幂函数的值域的不怜悯况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域。 性质: 对于a的取值为非零有理数,有必要分成几种状况来争论各自的特性: 首先我们知道假如a=p/q,q和p都是整数,则x(p/q)=q次根号(x的p次方),假如q是奇数,函数的定义域是R,假如q是偶数,函数的定义域是0,+)。当指数n是负整数时,设a=-k

6、,则x=1/(xk),明显x0,函数的定义域是(-,0)(0,+).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道: 排解了为0与负数两种可能,即对于x0,则a可以是任意实数; 排解了为0这种可能,即对于x 排解了为负数这种可能,即对于x为大于且等于0的全部实数,a就不能是负数。 高三数学课堂讲解的重要学问点3 1.等差数列的定义 假如一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示. 2.等差数列的通项公式 若等差数列an的首项是a

7、1,公差是d,则其通项公式为an=a1+(n-1)d. 3.等差中项 假如A=(a+b)/2,那么A叫做a与b的等差中项. 4.等差数列的常用性质 (1)通项公式的推广:an=am+(n-m)d(n,mN_). (2)若an为等差数列,且m+n=p+q, 则am+an=ap+aq(m,n,p,qN_). (3)若an是等差数列,公差为d,则ak,ak+m,ak+2m,(k,mN_)是公差为md的等差数列. (4)数列Sm,S2m-Sm,S3m-S2m,也是等差数列. (5)S2n-1=(2n-1)an. (6)若n为偶数,则S偶-S奇=nd/2; 若n为奇数,则S奇-S偶=a中(中间项). 留

8、意: 一个推导 利用倒序相加法推导等差数列的前n项和公式: Sn=a1+a2+a3+an, Sn=an+an-1+a1, +得:Sn=n(a1+an)/2 两个技巧 已知三个或四个数组成等差数列的一类问题,要擅长设元. (1)若奇数个数成等差数列且和为定值时,可设为,a-2d,a-d,a,a+d,a+2d,. (2)若偶数个数成等差数列且和为定值时,可设为,a-3d,a-d,a+d,a+3d,其余各项再依据等差数列的定义进行对称设元. 四种方法 等差数列的推断方法 (1)定义法:对于n2的任意自然数,验证an-an-1为同一常数; (2)等差中项法:验证2an-1=an+an-2(n3,nN_)都成立; (3)通项公式法:验证an=pn+q; (4)前n项和公式法:验证Sn=An2+Bn. 注:后两种方法只能用来推断是否为等差数列,而不能用来证明等差数列. 高三数学课堂讲解的重要学问点相关(文章): 高三数学重要学问点整理

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论