2021-2022学年安徽省阜阳市界首中学高考数学四模试卷含解析_第1页
2021-2022学年安徽省阜阳市界首中学高考数学四模试卷含解析_第2页
2021-2022学年安徽省阜阳市界首中学高考数学四模试卷含解析_第3页
2021-2022学年安徽省阜阳市界首中学高考数学四模试卷含解析_第4页
2021-2022学年安徽省阜阳市界首中学高考数学四模试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1执行如图所示的程序框图,输出的结果为( )ABCD2函数在上为增函数,则的值可以是( )A0B

2、CD3某几何体的三视图如图所示,则此几何体的体积为( )AB1CD4已知集合,且、都是全集(为实数集)的子集,则如图所示韦恩图中阴影部分所表示的集合为( )AB或CD5已知中,角、所对的边分别是,则“”是“”的( )A充分不必要条件B必要不充分条件C既不充分也不必要条件D充分必要条件6若复数,则( )ABCD207已知向量,若,则( )ABCD8已知函数,若方程恰有三个不相等的实根,则的取值范围为( )ABCD9正三棱柱中,是的中点,则异面直线与所成的角为( )ABCD10记集合和集合表示的平面区域分别是和,若在区域内任取一点,则该点落在区域的概率为( )ABCD11下列命题是真命题的是( )

3、A若平面,满足,则;B命题:,则:,;C“命题为真”是“命题为真”的充分不必要条件;D命题“若,则”的逆否命题为:“若,则”.12已知集合Mx|1x2,Nx|x(x+3)0,则MN( )A3,2)B(3,2)C(1,0D(1,0)二、填空题:本题共4小题,每小题5分,共20分。13甲、乙两人同时参加公务员考试,甲笔试、面试通过的概率分别为和;乙笔试、面试通过的概率分别为和若笔试面试都通过才被录取,且甲、乙录取与否相互独立,则该次考试只有一人被录取的概率是_14某校名学生参加军事冬令营活动,活动期间各自扮演一名角色进行分组游戏,角色按级别从小到大共种,分别为士兵、排长、连长、营长、团长、旅长、师

4、长、军长和司令.游戏分组有两种方式,可以人一组或者人一组.如果人一组,则必须角色相同;如果人一组,则人角色相同或者人为级别连续的个不同角色.已知这名学生扮演的角色有名士兵和名司令,其余角色各人,现在新加入名学生,将这名学生分成组进行游戏,则新加入的学生可以扮演的角色的种数为_.15已知,(,),则_16已知,那么_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知曲线C的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:(是参数).(1)若直线l与曲线C相交于A、B两点,且,试求实数m值.(2)设为曲线上任意

5、一点,求的取值范围.18(12分)如图,在四棱锥中,侧棱底面,是棱的中点.(1)求证:平面;(2)若,点是线段上一点,且,求直线与平面所成角的正弦值.19(12分)设椭圆的离心率为,圆与轴正半轴交于点,圆在点处的切线被椭圆截得的弦长为(1)求椭圆的方程;(2)设圆上任意一点处的切线交椭圆于点,试判断是否为定值?若为定值,求出该定值;若不是定值,请说明理由20(12分)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,为等边三角形,平面平面ABCD,M,N分别是线段PD和BC的中点.(1)求直线CM与平面PAB所成角的正弦值;(2)求二面角D-AP-B的余弦值;(3)试判断直线MN与平

6、面PAB的位置关系,并给出证明.21(12分)已知函数与的图象关于直线对称. (为自然对数的底数)(1)若的图象在点处的切线经过点,求的值;(2)若不等式恒成立,求正整数的最小值.22(10分)已知等差数列的公差,且,成等比数列(1)求数列的通项公式;(2)设,求数列的前项和参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】由程序框图确定程序功能后可得出结论【详解】执行该程序可得故选:D【点睛】本题考查程序框图解题可模拟程序运行,观察变量值的变化,然后可得结论,也可以由程序框图确定程序功能,然后求解2D【解析】依次将选项中

7、的代入,结合正弦、余弦函数的图象即可得到答案.【详解】当时,在上不单调,故A不正确;当时,在上单调递减,故B不正确;当时,在上不单调,故C不正确;当时,在上单调递增,故D正确.故选:D【点睛】本题考查正弦、余弦函数的单调性,涉及到诱导公式的应用,是一道容易题.3C【解析】该几何体为三棱锥,其直观图如图所示,体积故选.4C【解析】根据韦恩图可确定所表示集合为,根据一元二次不等式解法和定义域的求法可求得集合,根据补集和交集定义可求得结果.【详解】由韦恩图可知:阴影部分表示,.故选:.【点睛】本题考查集合运算中的补集和交集运算,涉及到一元二次不等式和函数定义域的求解;关键是能够根据韦恩图确定所求集合

8、.5D【解析】由大边对大角定理结合充分条件和必要条件的定义判断即可.【详解】中,角、所对的边分别是、,由大边对大角定理知“”“”,“”“”.因此,“” 是“”的充分必要条件.故选:D.【点睛】本题考查充分条件、必要条件的判断,考查三角形的性质等基础知识,考查逻辑推理能力,是基础题6B【解析】化简得到,再计算模长得到答案.【详解】,故.故选:.【点睛】本题考查了复数的运算,复数的模,意在考查学生的计算能力.7A【解析】根据向量坐标运算求得,由平行关系构造方程可求得结果.【详解】, ,解得:故选:【点睛】本题考查根据向量平行关系求解参数值的问题,涉及到平面向量的坐标运算;关键是明确若两向量平行,则

9、.8B【解析】由题意可将方程转化为,令,进而将方程转化为,即或,再利用的单调性与最值即可得到结论.【详解】由题意知方程在上恰有三个不相等的实根,即,.因为,式两边同除以,得.所以方程有三个不等的正实根.记,则上述方程转化为.即,所以或.因为,当时,所以在,上单调递增,且时,.当时,在上单调递减,且时,.所以当时,取最大值,当,有一根.所以恰有两个不相等的实根,所以.故选:B.【点睛】本题考查了函数与方程的关系,考查函数的单调性与最值,转化的数学思想,属于中档题.9C【解析】取中点,连接,根据正棱柱的结构性质,得出/,则即为异面直线与所成角,求出,即可得出结果.【详解】解:如图,取中点,连接,由

10、于正三棱柱,则底面,而底面,所以,由正三棱柱的性质可知,为等边三角形,所以,且,所以平面,而平面,则,则/,即为异面直线与所成角,设,则,则,.故选:C.【点睛】本题考查通过几何法求异面直线的夹角,考查计算能力.10C【解析】据题意可知,是与面积有关的几何概率,要求落在区域内的概率,只要求、所表示区域的面积,然后代入概率公式,计算即可得答案【详解】根据题意可得集合所表示的区域即为如图所表示:的圆及内部的平面区域,面积为,集合,表示的平面区域即为图中的,根据几何概率的计算公式可得,故选:C【点睛】本题主要考查了几何概率的计算,本题是与面积有关的几何概率模型解决本题的关键是要准确求出两区域的面积1

11、1D【解析】根据面面关系判断A;根据否定的定义判断B;根据充分条件,必要条件的定义判断C;根据逆否命题的定义判断D.【详解】若平面,满足,则可能相交,故A错误;命题“:,”的否定为:,故B错误;为真,说明至少一个为真命题,则不能推出为真;为真,说明都为真命题,则为真,所以“命题为真”是“命题为真”的必要不充分条件,故C错误;命题“若,则”的逆否命题为:“若,则”,故D正确;故选D【点睛】本题主要考查了判断必要不充分条件,写出命题的逆否命题等,属于中档题.12C【解析】先化简Nx|x(x+3)0=x|-3x0,再根据Mx|1x2,求两集合的交集.【详解】因为Nx|x(x+3)0=x|-3x0,又

12、因为Mx|1x2,所以MNx|1x0.故选:C【点睛】本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】分别求得甲、乙被录取的概率,根据独立事件概率公式可求得结果.【详解】甲被录取的概率;乙被录取的概率;只有一人被录取的概率.故答案为:.【点睛】本题考查独立事件概率的求解问题,属于基础题.14【解析】对新加入的学生所扮演的角色进行分类讨论,分析各种情况下个学生所扮演的角色的分组,综合可得出结论.【详解】依题意,名学生分成组,则一定是个人组和个人组.若新加入的学生是士兵,则可以将这个人分组如下;名士兵;士兵、排长、连长各名

13、;营长、团长、旅长各名;师长、军长、司令各名;名司令.所以新加入的学生可以是士兵,由对称性可知也可以是司令;若新加入的学生是排长,则可以将这个人分组如下:名士兵;连长、营长、团长各名;旅长、师长、军长各名;名司令;名排长.所以新加入的学生可以是排长,由对称性可知也可以是军长;若新加入的学生是连长,则可以将这个人分组如下:名士兵;士兵、排长、连长各名;连长、营长、团长各名;旅长、师长、军长各名;名司令.所以新加入的学生可以是连长,由对称性可知也可以是师长;若新加入的学生是营长,则可以将这个人分组如下:名士兵;排长、连长、营长各名;营长、团长、旅长各名;师长、军长、司令各名;名司令.所以新加入的学

14、生可以是营长,由对称性可知也可以是旅长;若新加入的学生是团长,则可以将这个人分组如下:名士兵;排长、连长、营长各名;旅长、师长、军长各名;名司令;名团长.所以新加入的学生可以是团长.综上所述,新加入学生可以扮演种角色.故答案为:.【点睛】本题考查分类计数原理的应用,解答的关键就是对新加入的学生所扮演的角色进行分类讨论,属于中等题.15【解析】先利用倍角公式及差角公式把已知条件化简可得,平方可得.【详解】,则,平方可得故答案为:.【点睛】本题主要考查三角恒等变换,倍角公式的合理选择是求解的关键,侧重考查数学运算的核心素养.16【解析】由已知利用诱导公式可求,进而根据同角三角函数基本关系即可求解.

15、【详解】,.故答案为:.【点睛】本小题主要考查诱导公式、同角三角函数的基本关系式,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)或;(2).【解析】(1)将曲线的极坐标方程化为直角坐标方程,在直角坐标条件下求出曲线的圆心坐标和半径,将直线的参数方程化为普通方程,由勾股定理列出等式可求的值;(2)将圆化为参数方程形式,代入由三角公式化简可求其取值范围【详解】(1)曲线C的极坐标方程是化为直角坐标方程为:直线的直角坐标方程为:圆心到直线l的距离(弦心距)圆心到直线的距离为 :或(2)曲线的方程可化为,其参数方程为:为曲线上任意一点,的取值范围是18(1)证明见

16、解析;(2)【解析】(1)的中点,连接,证明四边形是平行四边形可得,故而平面;(2)以为原点建立空间坐标系,求出平面的法向量,计算与的夹角的余弦值得出答案【详解】(1)证明:取的中点,连接,分别是,的中点,又,四边形是平行四边形,又平面,平面,平面(2)解:,又,故,以为原点,以,为坐标轴建立空间直角坐标系,则,0,0,2,0,2,是的中点,是的三等分点,1,0,2,设平面的法向量为,则,即,令可得, 直线与平面所成角的正弦值为【点睛】本题考查了线面平行的判定,空间向量与直线与平面所成角的计算,属于中档题19(1); (2)见解析.【解析】(I)结合离心率,得到a,b,c的关系,计算A的坐标,

17、计算切线与椭圆交点坐标,代入椭圆方程,计算参数,即可(II)分切线斜率存在与不存在讨论,设出M,N的坐标,设出切线方程,结合圆心到切线距离公式,得到m,k的关系式,将直线方程代入椭圆方程,利用根与系数关系,表示,结合三角形相似,证明结论,即可【详解】()设椭圆的半焦距为,由椭圆的离心率为知,椭圆的方程可设为.易求得,点在椭圆上,解得,椭圆的方程为. ()当过点且与圆相切的切线斜率不存在时,不妨设切线方程为,由()知,.当过点且与圆相切的切线斜率存在时,可设切线的方程为,即.联立直线和椭圆的方程得,得.,.综上所述,圆上任意一点处的切线交椭圆于点,都有.在中,由与相似得,为定值.【点睛】本道题考

18、查了椭圆方程的求解,考查了直线与椭圆位置关系,考查了向量的坐标运算,难度偏难20(1)(2)(3)直线平面,证明见解析【解析】取中点,连接,则,再由已知证明平面,以为坐标原点,分别以,所在直线为,轴建立空间直角坐标系,求出平面的一个法向量(1)求出的坐标,由与所成角的余弦值可得直线与平面所成角的正弦值;(2)求出平面的一个法向量,再由两平面法向量所成角的余弦值可得二面角的余弦值;(3)求出的坐标,由,结合平面,可得直线平面【详解】底面是边长为2的菱形,为等边三角形取中点,连接,则,为等边三角形,又平面平面,且平面平面,平面以为坐标原点,分别以,所在直线为,轴建立空间直角坐标系则,1,0,0,设平面的一个法向量为由,取,得(1)证明:设直线与平面所成角为,则,即直线与平面所成角的正弦值为;(2)设平面的一个法向量为,由,得二面角的余弦值为;(3),又平面,直线平面【点睛】本题考查线面平行的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论