05计算机图形学双语课程parametric cubic curves_第1页
05计算机图形学双语课程parametric cubic curves_第2页
05计算机图形学双语课程parametric cubic curves_第3页
05计算机图形学双语课程parametric cubic curves_第4页
05计算机图形学双语课程parametric cubic curves_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Designing Parametric Cubic Curves1Angel: Interactive Computer Graphics 5E Addison-Wesley 2009原著Ed AngelProfessor of Computer Science, Electrical and Computer Engineering, and Media ArtsUniversity of New Mexico编辑 武汉大学计算机学院图形学课程组2Angel: Interactive Computer Graphics 5E Addison-Wesley 2009ObjectivesInt

2、roduce the types of curvesInterpolatingHermiteBezierB-splineAnalyze their performance3Angel: Interactive Computer Graphics 5E Addison-Wesley 2009Matrix-Vector Formdefinethen4Angel: Interactive Computer Graphics 5E Addison-Wesley 2009Interpolating Curvep0p1p2p3Given four data (control) points p0 , p1

3、 ,p2 , p3determine cubic p(u) which passes through themMust find c0 ,c1 ,c2 , c35Angel: Interactive Computer Graphics 5E Addison-Wesley 2009Interpolation Equationsapply the interpolating conditions at u=0, 1/3, 2/3, 1p0=p(0)=c0p1=p(1/3)=c0+(1/3)c1+(1/3)2c2+(1/3)3c3p2=p(2/3)=c0+(2/3)c1+(2/3)2c2+(2/3)

4、3c3p3=p(1)=c0+c1+c2+c3or in matrix form with p = p0 p1 p2 p3Tp=Ac6Angel: Interactive Computer Graphics 5E Addison-Wesley 2009Interpolation MatrixSolving for c we find the interpolation matrixc=MIpNote that MI does not depend on input data andcan be used for each segment in x, y, and z7Angel: Interac

5、tive Computer Graphics 5E Addison-Wesley 2009Interpolating Multiple Segmentsuse p = p0 p1 p2 p3Tuse p = p3 p4 p5 p6TGet continuity at join points but notcontinuity of derivatives 8Angel: Interactive Computer Graphics 5E Addison-Wesley 2009Blending FunctionsRewriting the equation for p(u)p(u)=uTc=uTM

6、Ip = b(u)Tpwhere b(u) = b0(u) b1(u) b2(u) b3(u)T isan array of blending polynomials such thatp(u) = b0(u)p0+ b1(u)p1+ b2(u)p2+ b3(u)p3b0(u) = -4.5(u-1/3)(u-2/3)(u-1)b1(u) = 13.5u (u-2/3)(u-1)b2(u) = -13.5u (u-1/3)(u-1)b3(u) = 4.5u (u-1/3)(u-2/3)9Angel: Interactive Computer Graphics 5E Addison-Wesley

7、 2009Blending FunctionsShape of the blending functions10Angel: Interactive Computer Graphics 5E Addison-Wesley 2009Interpolating PatchNeed 16 conditions to determine the 16 coefficients cijChoose at u,v = 0, 1/3, 2/3, 111Angel: Interactive Computer Graphics 5E Addison-Wesley 2009Matrix FormDefine v

8、= 1 v v2 v3T C = cij P = pij p(u,v) = uTCvIf we observe that for constant u (v), we obtaininterpolating curve in v (u), we can showp(u,v) = uTMIPMITv C=MIPMI12Angel: Interactive Computer Graphics 5E Addison-Wesley 2009Blending PatchesEach bi(u)bj(v) is a blending patchShows that we can build and ana

9、lyze surfaces from our knowledge of curves13Angel: Interactive Computer Graphics 5E Addison-Wesley 2009Other Types of Curves and SurfacesHow can we get around the limitations of the interpolating formLack of smoothnessDiscontinuous derivatives at join pointsWe have four conditions (for cubics) that

10、we can apply to each segmentUse them other than for interpolationNeed only come close to the data14Angel: Interactive Computer Graphics 5E Addison-Wesley 2009Hermite Formp(0)p(1)p(0)p(1)Use two interpolating conditions andtwo derivative conditions per segmentEnsures continuity and first derivativeco

11、ntinuity between segments15Angel: Interactive Computer Graphics 5E Addison-Wesley 2009EquationsInterpolating conditions are the same at endsp(0) = p0 = c0p(1) = p3 = c0+c1+c2+c3Differentiating we find p(u) = c1+2uc2+3u2c3 Evaluating at end pointsp(0) = p0 = c1p(1) = p3 = c1+2c2+3c316Angel: Interacti

12、ve Computer Graphics 5E Addison-Wesley 2009Matrix FormSolving, we find c=MHq where MH is the Hermite matrix 17Angel: Interactive Computer Graphics 5E Addison-Wesley 2009Blending Polynomialsp(u) = b(u)TqAlthough these functions are smooth, the Hermite formis not used directly in Computer Graphics and

13、 CAD because we usually have control points but not derivativesHowever, the Hermite form is the basis of the Bezier form18Angel: Interactive Computer Graphics 5E Addison-Wesley 2009Parametric and Geometric ContinuityWe can require the derivatives of x, y, and z to each be continuous at join points (

14、parametric continuity)Alternately, we can only require that the tangents of the resulting curve be continuous (geometry continuity)The latter gives more flexibility as we need satisfy only two conditions rather than three at each join point19Angel: Interactive Computer Graphics 5E Addison-Wesley 200

15、9ExampleHere the p and q have the same tangents at the ends of the segment but different derivativesGenerate different Hermite curvesThis techniques is usedin drawing applications20Angel: Interactive Computer Graphics 5E Addison-Wesley 2009Higher Dimensional ApproximationsThe techniques for both interpolating and Hermite curves can be used with higher dimensional parametric polynomialsFor

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论