2022年光伏设备行业发展现状及未来技术趋势分析_第1页
2022年光伏设备行业发展现状及未来技术趋势分析_第2页
2022年光伏设备行业发展现状及未来技术趋势分析_第3页
2022年光伏设备行业发展现状及未来技术趋势分析_第4页
2022年光伏设备行业发展现状及未来技术趋势分析_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022年光伏设备行业发展现状及未来技术趋势分析1、“提效降本”贯穿光伏历史发展,未来进步仍有空间提效降本贯穿历史发展,光伏发电进入全面化市场阶段。在光伏技术,规 模经济,供应链和项目开发流程不断改善的推动下,从 2010 年到 2020 年,规模 以上太阳能光伏发电成本下降了 85%。光伏组件平均功率由 2010 年的 250-300W 提升至 2020 年 400-550W,预计到 2030 年有望提升至 800-1200W。大型光伏电 站的中标电价不断降低,2021 年,沙特地区由于光照资源好,非系统成本低, 其光伏电站中标价格已经低至 1.04美分/kWh,中国最低中标电价为 2.3美

2、分/kWh, 已于 2021 年实现全面平价上网,光伏发电已经全面摆脱补贴的限制,进入全面 市场化发展阶段。光伏降本仍有空间,低成本是光伏成为全球主流能源的必要条件。未来光 伏要想发展成为全球主流能源,必须拥有低成本竞争力。对比化石燃料、生物质 能、地热能、水电、太阳能以及风能等一次能源,过去十年,在精准的政策扶持 与产业规模效应的带动下,风电光伏发电成本显著降低,可再生能源逐步成为电 力系统的支柱。目前光伏发电的成本已经与化石燃料成本区间(0.05-0.15 美元 /kWh)基本持平,而要想达到 2050 年光伏发电占比超过 35%的目标,光伏发电 成本必须全面低于化石燃料发电成本。根据 I

3、RENA 的预测,2030 年光伏发电成 本最低将达到 0.02 美元/kWh,2050 年低至 0.014 美元/kWh,与当前对比仍存在较大的降本空间。技术变革是光伏成本下降的最大驱动力,是决定电池光电转换效率的关键 因素。光伏产业链包含硅料、拉棒、硅片、电池及组件环节,过去十年间光伏效 率提升显著,这与光伏全产业链各环节技术的共同进步是分不开的,其中包括硅 料环节改良西门子法,单晶拉棒环节的 RCZ 法,硅片环节的金刚线切割法,电 池环节的 PERC 电池技术以及组件环节的多主栅技术等,而当前技术进步的脚步 仍未停歇,颗粒硅、CCZ、新型电池等技术有望进一步推动行业降本增效。在光伏产业链

4、众多环节中,电池环节是技术进步的核心。电池技术路线决 定了光伏产品的效率极限。单晶 PERC 电池是光伏技术发展历史上的重要转折, 为实现光伏发电平价上网做出了重要贡献。随着 PERC 电池量产效率的不断提升, 其当前效率已经达到 23.5%,接近理论效率极限 24.5%,行业亟需发展新一代电池技术,当前新型电池技术百花齐放,TOPcon,HJT,P-IBC 成为下一代新技术 的有力竞争者。2、单晶取代多晶是前车之鉴,下一代新型技术风起云涌2.1 从光伏发电原理看新技术电池突破点“光生伏特”效应是光伏发电的原理,它的发现使人类利用太阳能发电成为可 能。1839年法国贝克勒尔做物理实验时,发现了

5、“光生伏特效应”。1954年,贝尔 实验室研制成功第一个实用价值的硅太阳能电池,纽约时报把这一突破性的成果 称为“无限阳光为人类文明服务的一个新时代的开始”。 “光生伏特”效应指的是半导体在受到光照的条件下,光子能量激发价带内的 束缚电子穿过禁带到达导带成为自由电子,并在价带中留下空穴,形成为空穴电子对,从而改变了材料的载流子浓度。在有外电路接入的情况下,电子和空穴 少数载流子在扩散作用和 PN 结内建电场的共同的作用下按照特定的方向移动, 从而产生电流。半导体材料的选择是决定光伏电池效率的主要因素。半导体电池材料的禁 带宽度决定了其短路电流和开路电压,其中短路电流随着禁带宽度的减小而增加,

6、开路电压随着禁带宽度的减小而降低,因此适用于光伏发电材料的禁带宽度应当 有一个合适的范围,当电池材料的禁带宽度在 1.1-1.6eV 时,其理论光电转换效 率能够达到 29.43%。目前可用做光伏电池的材料主要是元素周期表中 III-V 主族 材料,包括硅材料、砷化镓、铜铟镓硒,碲化镉以及近年来发展比较快的有机化 合物电池等。综合各种材料的电学性能,安全性,资源丰富性,无毒无害性等各 种因素,硅材料成为目前光伏行业中普遍使用的电池材料。光学损失和电学损失是影响光伏电池效率的两大重要因素。尽管硅材料的 理论电池效率能够达到 29.43%,但是目前在实验室中硅电池的最高转化效率为 26.3%,主要

7、是受光学损失和电学损失的影响。光学损失产生的主要原因是材料表面的反射损失。包括组件玻璃的反射, 电池前表面和背表面的反射,电池栅线的遮挡等等。目前减少光学损失的主要方 法包括:(1)使用超白高透的压延光伏玻璃。(2)通过减反膜降低反射率,例 如玻璃减反膜,电池表面的氮化硅减反膜。(3)利用化学药品对硅片表面进行 腐蚀,形成绒面,增加陷光作用。(4)增加电池栅线高宽比,减少栅线遮挡损 失,例如使用多主栅以及 IBC 电池技术。电学损失产生的主要原因是半导体材料体内及表面的复合。光子激发的空 穴电子对只有在 PN 附近才会对光电转换作出贡献,在距离 PN 结太远处产生的 载流子,很有可能在移动到器

8、件的电极之前就发生复合。半导体中复合率越低, 开路电压 Voc 越高,光电转换效率就越高。随着硅片质量的不断提高,低成本薄 片化的进程使得晶硅电池表面复合损失成为制约电池效率上限提升的关键因素。 产生复合的主要原因首先跟材料本身的内部缺陷以及杂质等相关,例如单晶硅少 子寿命要优于多晶硅,N 型要优于 P 型;其次是由于高浓度的扩散在电池前表面 引入大量的复合中心,通过改变光伏电池的结构,退火氢钝化以及引入钝化膜, 隧穿膜等方式,可以有效延长半导体内光生载流子寿命,减少复合,从而提高光 电转化效率,因此使用 N 型硅片,改变电池结构(TOPcon, HJT)是降低电学损 失的有效方式。2.2 技

9、术发展复盘:单晶 PERC 取代多晶成为主流技术单多晶电池技术路线之争,以单晶的全面胜利而告终。过去一段时期,单 多晶技术路线之争一直是光伏行业争论的焦点。多晶硅片中硅原子排列的晶向各 不相同,不同的晶面交接处有大量的晶界,晶格缺陷和晶界处的杂质引入了大量 的少数载流子复合中心,因此降低了多晶电池的转化效率。而单晶硅片具有完整 的晶格排列,其位错密度和金属杂质比多晶硅片小得多,因此具有更高的少子寿 命。与多晶硅相比,单晶硅在晶体品质、电学性能、转换效率方面都具备显著的 优势,然而由于其成本居高不下,一直不被下游厂商所接受,多晶技术在过去较 长时期内一直占据主要市场份额。自 2015 年起,单晶

10、凭借连续直拉法,金刚线 切割,PERC 电池等一系列的技术升级实现降本增效,性价比大幅提高,逐渐缩 小与多晶之间的差距,并最终实现逆转,2020年单晶硅占比已经达到85%,成为 当前的主流技术。PERC 取代 BSF 电池成为主流。2016 年之前,BSF 铝背场电池是主流电池 技术,市占率一度超过 90%。2018年之后,单晶 PERC市占率以每年 20%左右的 百分比提升,并在 19 年反超 BSF,成为主流电池技术。2020 年单晶 PERC 市占 率达到 85%左右。 PERC(Passivated Emitter and Rear Cell),即钝化发射极和背面电池技术,最 早在 2

11、0 世纪 80 年代由澳大利亚科学家 Martin Green 提出。PERC 电池与传统铝 背电场(BSF)电池的主要区别在于其在电池的背面添加一层氧化铝和氮化硅钝 化膜。由于硅片表面和内部的杂质和缺陷会带来电学损失,因此需要增加钝化膜 来降低表面载流子的复合来减小缺陷带来的影响,从而保障电池效率。PERC 氧化铝薄膜具备良好的场效应和化学钝化效果。钝化效果指的是通过 减少空穴-电子对的复合,延长少子寿命来减少电学损失,从而提高光电转换效 率。根据钝化机理的不同,又可以分为场效应钝化和化学钝化,其中场效应钝化 指的是在界面处形成电场,以同极相斥效应来阻止少子在界面处的复合。化学钝 化指的是通

12、过饱和悬挂键来弱化界面电子态,减少复合中心。氧化铝的固定负电 荷密度高达 1013/cm3,在沉积过程中,负电荷恰好在氧化铝和硅晶表面交界处, 具备良好的场钝化效果。而氧化铝薄膜在制备的过程中同时扮演着高效氢原子储 库的作用,能够在热处理过程中提供充足的氢原子,饱和硅表面悬挂键,起到良 好的化学钝化效果。两种钝化效应的叠加,使得电池效率显著提升,镀膜后的 PERC 电池效率较 BSF 高出 1%以上。PERC 电池设备国产化加速了 PERC 对 BSF 电池的替代。沉积氧化铝的方 法主要有等离子体增强化学气相沉积(PECVD)和原子层沉积(ALD)两种, 其中前者已经广泛应用于氮化硅的沉积,后

13、者源自半导体工艺。2012-2015 年,早期的设备供应商以海外供应商为主,引领市场的瑞士 Meyer Burger 公司率先开发出正反面沉积的三合一板式 PECVD,德国 CT 开发出 管式 PECVD 设备,SoLay Tech 则以 ALD 设备为主,三种设备都在电池厂家得到 了规模化的应用,以晶澳科技为代表的国内电池制造企业开始技改升级,布局 PERC 技术,而彼时国内设备商还处于起步阶段,与国外设备差距较大。 2015-2017 年,在“领跑者计划”的推动下,PERC 电池迎来爆发,国内 PERC 产能从 4.5GW 增至 28.9GW,与此同时,国内 PERC 设备逐步成熟,取得阶

14、段性 成果,捷佳伟创管式 PECVD 设备、理想 ALD 设备出货量逐步增加。 2018-2020 年,PERC 设备进口替代完成,设备成本大幅降低,目前 PERC 全 产线设备投资已经下降至 1-1.5 亿元/GW,进一步加速了 PERC 对 BSF 的替代。 爱旭股份,通威股份,润阳光伏等凭借 PERC 技术实现弯道超车,迅速崛起成长 为电池龙头企业。2.3 未来技术趋势:高效技术百花齐放,新一代电池蓄势待发光伏电池技术百花齐放,新一代电池蓄势待发。光伏电池按照材料类型可分 为晶硅电池和薄膜电池;按照晶体类型可分为多晶硅电池和单晶硅电池;按照掺 杂类型可分为 P 型电池和 N 型电池;按照

15、电池结构可分为 BSF,PERC,TOPcon, HJT 和 IBC 电池等。尽管电池的材料和结构多种多样,但效率提升原理万变不离 其宗,最终都归结到减少电学损失和减少光学损失两种路径之上。2.3.1 N 型电池:更高的少子寿命减少电学损失,引领下一代新技术发展相对于 P 型硅片而言,以 N 型硅片为基底的太阳电池在发电效率的提升方 面有诸多优势,主要体现在降低电学损失方面:1)更高的理论效率极限;2) 更高的少子寿命和杂质容忍度;3)无光衰;4)更低的温度系数。 N 型电池理论效率极限更高,晶硅电池按照掺杂类型的不同可分为 P 型电池 和 N 型电池。目前单晶 PERC 已经在性价比和效率上

16、战胜多晶,成为当前主流电 池技术。然而由于 PERC 电池结构本身的特性,其理论极限效率约 24.5%,当前 领先的电池厂家量产化平均效率已达 23.4%左右,未来 PERC 电池进一步提效空 间有限。根据德国 ISFH 研究,N 型单面 TOPcon 电池理论效率极限为 27.1%,双 面多晶硅钝化 TOPcon 为 28.7%,异质结电池理论效率极限为 27.5%。因此相较 于 P 型电池,N 型电池在未来拥有更高的效率提升空间。N 型硅片具有更高的少子寿命和杂质容忍度。N 型硅片和 P 型硅片的区别在 于硅材料中所掺杂的元素不同,P 型硅片中主要掺杂硼或镓,少子为电子,而 N 型硅片中掺

17、杂元素为磷,少子为空穴。由于带正电荷的 Fe、Cu、Ni 等金属元素 具有很强的捕获少子电子的能力,而对于少子空穴的捕获能力比较弱,所以在相 同金属杂质的情况下,N 型硅片的少子寿命要明显高于 P 型硅片,根据研究表明, N 型硅片无论是对表面金属杂质,还是对体内杂质,都具有良好的抗污特性。相 同电阻率的 N 型 CZ 硅片的少子寿命比 P 型硅片的高出 12 个数量级,达到毫秒 级。对于 1013(atoms/cm3)的 Fe 体污染,N 型少子寿命由 1100 下降至 100, 而 P 型由 1300 下降至 0.8。材料的少子寿命越高,光电转换效率越高,因此 N 型 硅片具有更高的转换效

18、率。N 型电池无光致衰减(LID)现象。光致衰减现象指的是光伏电池组件在初 始光照情况下,效率发生大幅衰减的现象。P 型硅片在光照或者电流的注入下, 掺杂的硼元素会与氧形成硼氧复合体。该复合体存在没有饱和的化学键,因此会 捕捉光照产生的载流子,从而降低载流子的寿命。硅片中的硼、氧含量越大,产 生的硼氧复合体越多,少子寿命降低的幅度就越大,而掺磷的 N型晶体硅中硼含 量极低,所以几乎没有光致衰减效应的存在。目前产业界缓解 P 型光衰主要思路 是降低硼或氧含量,通过使用高纯坩埚进行单晶生长可以降低氧含量,使用硼镓 共掺杂降低硼含量,前者会增加硅片生产成本,后者会降低电池效率。而使用 N 型硅片则不

19、存在光衰问题。N 型电池市场份额将有望持续提升。N 型硅片相较于 P 型硅片具有诸多优势, 过去由于 N型硅片中的磷原子与硅相溶性较差,分凝系数低,电阻率均一性差, 工艺技术不成熟,成本较高,限制了 N 型硅片的发展。随着 N 型硅片工艺水平 的逐步提高、吸杂工艺的普及化以及 TOPcon 和 HJT 电池逐步实现规模化,未来 N 型硅片的市场份额有望持续提升,逐步实现对 P 型市占率的超越。2.3.2 IBC 电池:表面无栅线减少光学损失,可与任何电池新技术叠加IBC (Interdigitated Back Contact),指交叉背接触电池是 Schwartz 和 Lammert 于 1

20、975 年提出来的,将电池的发射区电极和基区电极均设计于电池背面且以交 叉的形式排布的一种太阳能电池。 IBC 太阳电池最显著的特点是 PN 结和金属接触都处于太阳电池的背部,前 表面彻底避免了金属栅线电极的遮挡,结合前表面的金字塔绒面结构和减反层组 成的陷光结构,能够最大限度地利用入射光,减少光学损失,具有更高的短路电 流,同时,背部采用优化的金属栅线电极,降低了串联电阻。IBC 结构理论上可将光电转换效率提升 0.6-0.7%。以 10BB 的 182 PERC 电 池为例,主栅线宽度为 0.1mm,细栅线宽度为 30m,栅线遮挡面积约为 990 mm2 ,占 电池总面积的 2.9%,按照

21、 23.5%的电池效率计算,将正面栅线移除后,理论上电 池效率可提升 0.68%。因此,移除正面栅线能够显著降低光学损失,实现入射光 子的最大化利用,是提高光电转换效率的有效方式。IBC 万能结构可与任何一种电池新技术相叠加。IBC 通过转移正面栅线来提 高电池效率的方式,使得其成为一种万能的结构,可以与任何一种电池新技术叠 加,IBC 与 TOPcon 电池叠加可形成 TBC 电池,与 HJT 电池叠加可形成 HBC 电 池,与 P 型 PERC 电池叠加则形成 PBC 电池,均有较为显著的提效效果。 IBC 电池对基体材料要求较高,需要较高的少子寿命。因为 IBC电池属于背 结电池,为使光

22、生载流子在到达背面 p-n 结前尽可能少的或完全不被复合掉,就 需要较高的少子扩散长度,因此 IBC 电池需采用高少子寿命的 P 型硅片,或者 N 型硅片,以保证更高的载流子收集率。3、短期内 TOPcon 及 P-IBC 共同发展,长期 HJT 技术有望形成统一路线3.1 发展历史:你追我赶,各项电池技术纷纷实现从实验室到产业化电池技术的发展必然要经历实验室阶段,小试阶段,中试阶段才能最终达到 产业化阶段。TOPcon 和 HJT 是目前行业内两种以 N 型硅片为基底的主流技术, 两者相比各有优劣势,经过多年的研发,均已进入量产转化阶段。其中 Topcon 由于与现有的 PERC 电池产线具

23、有良好的兼容性,技术工艺上相对更加成熟稳定, 已经具备性价比优势。HJT 作为一种与现有产线不兼容的全新电池结构,效率起 点高,未来提升空间大,但当前还面临成本压力问题。P-IBC 技术是 P 型高效技 术的延续,它结合了 PERC 电池,TOPcon 电池和 IBC 电池的结构优点,将 P 型 电池的效率潜力发挥到最大,成本优势突出,目前也已具备量产性价比。 TOPCon 电池:全称隧穿氧化层钝化接触电池(Tunnel Oxide Passivating Contacts),是一种使用超薄隧穿氧化层和掺杂多晶硅层作为钝化层结构的太阳 电池,同时兼具良好的接触性能,可以极大地提升太阳能电池的效

24、率。发展历史:2013 年德国 Fraunhofer 研究所在 N 型 PERT 结构基础上,首次提 出 TOPCon 结构;2017 年 Fraunhofer 研究所在实验室 TOPcon 电池上取得 25.8% 的效率记录; 2019 年,天合光能在面积为 244.62 平方厘米的 n 型衬底上制备出 正面最高效率为 24.58%的实验室电池,并获德国哈梅林太阳能研究所(ISFH) 下属的检测实验室认证,同年,天合光能 i-TOPCon 双面电池大规模量产正面平 均转换效率突破 23%。2021 年,晶科能源 TOPcon 电池在权威第三方测试认证机 构日本 JET 检测实验室标定全面积电

25、池最高转化效率达到 25.4%,成为商业化全 面积电池效率记录的保持者,为后续的 N 型 TOPCon 电池的扩产奠定基础。HJT 电池:传统晶体硅太阳电池的 p-n 结都是由导电类型相反的同一种材料 晶体硅组成的,属于同质结电池。而异质结(heterojunction,HJT)就是指由 两种不同的半导体材料组成的结。其工作基本原理与普通太阳能电池相同,都是 利用 PN 结的原理产生光生电流,不同的是 HJT 电池的发射级是一层非常薄的非 晶硅层,然而由于非晶硅本身的特性以及晶格失配产生的缺陷,使得产生的载流 子在接触表面附近很容易复合,因此要在晶体硅和非晶硅之间添加一层本征非晶 硅薄层来减小

26、载流子的复合。发展历史:从上世纪 80 年代,实验室就开始研究晶体硅和非晶硅叠加的电 池,1990 年最先由日本的三洋公司提出异质结的基本结构,2015 年三洋的 HJT 专利保护结束,专利壁垒消除,国内外电池企业开始大力发展和推广 HJT 量产化 技术,2015-2020 年间,国内光伏企业快速发展,国产电池制造装备崛起,光伏 量产技术研发的中心由欧洲转移至中国,早期的技术积累叠加光伏设备成本大幅 降低,为异质结的量产化发展铺平道路,汉能,中智,通威,阿特斯,迈为,东 方日升,华晟,隆基等成为国内 HJT领先企业。2021年 6月初,隆基绿能公布其 量产 HJT 转化效率达到 25.26%;

27、10 月,隆基再次刷新 HJT 电池效率记录,实验 室效率达到 26.3%,是异质结电池的一大突破。2022 年隆基在全尺寸(M6 尺寸, 面积 274.3cm)单晶硅片上,创造了转换效率为 25.47%的大尺寸 P 型光伏电池效 率世界纪录,进一步验证了低成本异质结量产技术的可行性。IBC 电池发展历史:IBC 电池早最是由 Lammert 和 Schwartz 在 1975 年提出 的背面指交叉式电池结构。美国的 Sunpower 公司是 IBC 电池的领军者和开拓者, 2014 年其量产平均效率就达到 23.62%,2015 年实验室效率达到 25.2%;2018 年 天合研发的大面积

28、IBC 电池转换效率达到 25.04%;2019 年 5 月中来公司宣布已 经可以实现 IBC 电池的批量生产,年产能约 150MW,量产转换效率 22.8%,最高效率 23.4%。2020 年 5 月国电投黄河水电 200MW N 型 IBC 产线建设完成,量产 平均转换效率达到 23.6%。IBC 电池与其他新电池技术相叠加,可以获得更高的 转换效率,2017 年 3 月,日本 Kaneka 公司通过将 HJT 和 IBC 电池技术叠加,得 到 HBC 电池,效率达到 26.7%,目前这项效率记录已经保持 5 年之久。3.2 电池结构:新型电池结构决定电池效率光伏电池的结构是影响电池效率的

29、关键因素,PN 结是光伏发电的核心,基 底上下不同的膜层,根据原理的不同,均起到了提升发电效率的作用。光伏电 池中常用的膜层包括氮化硅膜,氧化铝膜,二氧化硅膜,非晶硅膜,透明导电膜 等。PERC,TOPcon,HJT,P-IBC 等电池技术通过使用不同的膜层来达到提效 目的。氮化硅膜:减反作用和钝化作用。减反射膜原理在于利用光在不同界面处的 反射进行干涉相消。当膜层的光学厚度为某一波长的 1/4 时,则利用光波 180的 相位差可以进行叠加相消,氮化硅的折射率为 1.9,是最佳的电池减反膜材料。 此外,氮化硅膜在制备的过程中可引入大量的氢原子,经退火后起到良好的氢钝 化作用。 氧化铝膜:钝化作

30、用。硅片在生长时硅原子的周期性被打乱而产生悬空键, 容易形成复合中心,从而降低电池效率。氧化铝具有较高的固定负电荷密度,可 以大幅减少少数载流子到达表层,另一方面也扮演着氢原子存储的作用,在热处 理时可提供充足的氢原子,通过饱和悬空键来弱化界面电子态。二氧化硅+掺杂多晶硅:隧穿作用和钝化作用。二氧化硅隧穿膜最佳厚度在 1.2nm,其作用在于使多数载流子(电子)通过隧穿效应穿过氧化层,但少数载流 子(空穴)被阻挡,从而进一步降低了载流子复合效应。掺杂多晶硅层一方面起 到保护二氧化硅层的作用,另一方面会增加电子或空穴在氧化硅中的隧穿概率, 因此,多晶硅层的掺杂浓度越高,太阳能电池的开路电压和效率就

31、越高。氢化非晶硅膜:钝化作用和 PN 结作用。氢化非晶硅膜与晶体硅基底之间能 够形成良好的界面钝化,主要应用在异质结电池中,由于非晶硅层内存在 H键, 可以饱和其内部悬挂键,对异质结界面进行钝化从而减少界面缺陷对载流子的复 合,有效载流子数量增多,组件能获得更高的开路电压。HJT 电池由于在 PN 结 成结的同时完成了单晶硅的表面钝化,大大降低了表面、界面漏电流,电池效率 较传统晶硅电池有较大幅度的提升。3.3 工艺步骤:生产工艺决定量产难度电池结构的复杂程度决定了电池量产的工艺步骤,同时也决定了设备投资成 本,生产良率,产线兼容性以及量产难易程度。光伏电池的生产工艺主要包括清 洗制绒,由于不

32、同电池技术的结构存在差异,生产工艺也不尽相同。从生产步骤 上来看工艺步骤由少到多分别为 HJT, BSF, PERC, P-IBC, TOPcon,从兼容性上来 看同质结电池 PERC, TOPcon, P-IBC 电池之间兼容性较强,HJT 电池由于采用异 质结的创新性结构,工艺上不具备兼容性。 电池制备的基础工艺包括清洗制绒,扩散,清洗刻蚀,镀膜,激光开槽,丝 印烧结等步骤。(1) 清洗制绒由于硅片在切割过程中表面会产生大量的油污,金属污染和机械损伤,因此 要对硅片进行酸洗(多晶)或者碱洗(单晶),利用各向同行和各向异性原理对 硅片表面进行腐蚀,去除硅片表面机械损伤层;清除表面油污和金属杂

33、质,形成 洁净表面;形成起伏不平的绒面,使入射光在表面进行多次反射和折射,延长光 程,减少光学损失,金刚线切割硅片经过清洗制绒后表面反射率可从 50%降低至 15%以下。(2) 扩散使用液态磷源(三氯氧磷)/硼源(硼酸三甲酯等)在高温作用下在硅片表 面扩散沉积,主要作用是形成电池的 PN 结,根据掺杂元素的不同分为磷扩散和 硼扩散,其中 P 型硅片采用磷扩散,N 型硅片需进行硼扩散。由于硼原子在硅中 的固溶度较低,因此其扩散难度比磷扩散更高,温度需要达到 950-1050,成膜时间达到 240min。因此 N 型电池所需成本更高,制备难度更大。(3) 刻蚀扩散过程中磷(硼)会与硅形成磷硅玻璃层

34、 PSG(或硼硅玻璃层 BSG),为富含 磷元素的二氧化硅层,对后续工艺产生不良影响,并且可能导致 PN 结漏电,因 此需要使用化学试剂对 PSG(BSG)层进行刻蚀清洗。(4) 镀膜镀膜是光伏电池制备中的重要工艺,光伏电池根据结构的不同,钝化膜层的 种类较多,不同材料的膜层需要使用不同的镀膜方法进行制备。主要方法可分为 物理气相沉积 PVD、化学气相沉积 CVD、原子层沉积 ALD。在光伏行业中应用 较多的包括 PECVD, ALD, LPCVD, PVD 等技术。PECVD(等离子体化学气象沉积): 借助微波或射频等使含有薄膜组成原子的 气体,在局部形成等活性较强的离子体,在基片上沉积出薄

35、膜。主要用于制备氮 化硅,氧化铝及非晶硅膜层中,在 PERC, TOPcon, HJT, P-IBC 电池技术中均有应 用。 ALD(原子层沉积):通过将气相前驱体脉冲交替地通入反应器并在沉积基体上 化学吸附并反应而形成沉积膜的一种方法。主要用于制备氧化铝膜层,应用于 PERC, TOPcon 和 P-IBC 技术。 LPCVD(低压化学气象沉积):用加热的方式在低压条件下使气态化合物在基 片表面反应并淀积形成稳定固体薄膜,主要用于制备二氧化硅和掺杂多晶硅层, 应用于 TOPcon 和 P-IBC 技术。PVD(物理气象沉积):在真空条件下,采用大电流的电弧放电技术,利用气体 放电使靶材蒸发并

36、使被蒸发物质与气体都发生电离,利用电场的加速作用,使被 蒸发物质及其反应产物沉积。主要用于制备透明导电膜,应用于 HJT 技术。(5) 激光激光的作用主要包括激光掺杂和激光开凿。激光掺杂(SE)用于电池表现选择 性掺杂;激光消融用于电池背面局部膜层开槽,使背场与硅基底形成局部接触。(6) 丝印烧结光伏电池表面膜层不具备收集电子及空穴的能力,因此需要在电池的正背面 印刷银浆或铝浆,并通过高温烧结形成良好的金属半导体接触,将光生载流子导 出至外电路中形成电流。由于电池技术的的升级,工艺和设备变得更加复杂,初始投资成本更高,其 中 TOPcon, P-IBC的设备投资成本较为接近,较 PERC增加

37、9000 万元/GW 左右, 而 HJT 设备较贵,约为 PERC 设备的 3 倍。 PERC 电池工艺流程包括清洗制绒,磷扩散,激光掺杂 SE,刻蚀,镀氮化硅 膜,氧化铝膜,激光开槽和丝网印刷,总体设备投资 1.2-1.6 亿元/GW, 按照 7 年 折旧计算,折合设备成本 0.019 元/W。 TOPcon 电池由于需要使用 N 型硅片,并增加了二氧化硅隧穿层和多晶硅膜, 因此在 PERC 电池设备的基础上增加了硼扩散,LPCVD 和镀膜清洗设备,减少 了激光设备,整体投资在 2.1-2.5 亿元/GW, 按照 7 年折旧计算,折合设备成本0.031 元/W,较 PERC 高 0.012

38、元/W。P-IBC 电池工艺依旧使用的是 P 型硅片,但增加了二氧化硅隧穿层,多晶硅 膜,并对激光设备进行了升级,因此在 PERC 电池设备的基础上增加了 LPCVD, 镀膜清洗设备,并对激光设备进行了升级,整体投资在 2.2-2.6 亿元/GW, 按照 7 年折旧计算,折合设备成本 0.033 元/W,较 PERC 高 0.014 元/W。 HJT 设备与其他电池技术不兼容,主要包括制绒,PECVD,PVD 和丝网印 刷设备,总投资 3.8-4.5 亿元,按照 7 年折旧计算,折合设备成本 0.057 元/W, 设 备成本较高。3.4 生产成本:产品性价比决定扩产节奏成本是企业在进行新技术路

39、线选择时的核心考量因素。以 PERC 技术组件端 总成本作为参考标准,在假设条件下,TOPcon 较 PERC 成本高 0.04 元/W, P-IBC 成本与 PERC 几乎持平,HJT 成本高出 0.14 元/W。考虑高效组件 0.1 元左右的溢 价,TOPcon 与 P-IBC 电池目前均已具备量产性价比。假设条件:理想状态下 PERC,TOPcon,HJT,P-IBC 的效率分别为 23.50%, 24.80%,24.95%,24.80%,良率分别为 98.5%,96.5%,97.5%,95.0%。 硅片端:硅片端成本差异主要来源于基地材料的选择和硅片的厚度。硅片 材料方面 TOPcon

40、 和 HJT 使用 N 型硅片,PERC 和 P-IBC 使用 P 型硅片,硅片厚 度方面 TOPcon, PERC, P-IBC 均采用高温工艺,使用厚度为 160m 的硅片,HJT 低温工艺可使用150m硅片。N型硅片价格较P型高5-8%,则PERC,TOPcon, HJT,P-IBC 硅片端成本分别为 0.78、0.80、0.78、0.77 元/W。电池端:电池端成本差异主要来源于银浆耗量和设备折旧。银浆耗量方面 PERC,TOPcon,HJT,P-IBC分别为80、120、165、80 mg/片,设备投资分别为 1.3、2.1、3.8、2.2 亿元/GW。则 PERC,TOPcon,H

41、JT,P-IBC 电池端综合成本 分别为 0.94、1.00、1.11、0.96 元/W。 组件端:组件端成本差异主要来源于组件功率和非硅成本。按照 PERC, TOPcon,HJT,P-IBC功率分别为 550、570、575、570W 计算,组件端综合成本 分别为 1.56、1.60、1.70、1.56 元/W。 从最终组件端综合成本来看,当前 P-IBC 电池已经具备成本优势,TOPcon 成本较 PERC 稍高,HJT 电池成本还需进一步下降。 溢价:TOPcon 高效组件产品溢价约为 0.1 元/W。新型产品性价比除了考虑 绝对成本优势外,还需考虑高功率溢价优势。参考PVinfolink数据,2017-2020年 间,单晶组件相对于多晶组件长期保持 8%-10%的价格溢价,大尺寸(182及 210) 高功率组件产品相对于常规功率组件也能保持一定溢价。根据湖南省电力设计院测算,TOPcon 组件由于具有更高的转换效率,低温 度系数,双面率和弱光响应能力,因

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论