版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、二次根式和它的性质 情境导航 我国自主研制的第一艘载人航天飞船“神舟5号”于2003年10月15日发射成功(1)运用运载火箭发射航天飞船,火箭必须达到一定的速度,才能克服地心的引力,将飞船送入环绕地球运行的轨道这个速度称为第一宇宙速度第一宇宙速度的计算公式是 其中g9.8米/秒2,R为地球的半径.你能求出第一宇宙速度吗?gRV=1(2)要使一艘飞船脱离地心引力,进入围绕太阳运行的轨道所需要的速度称为第二宇宙速度第二宇宙速度为 第二宇宙速度是多少?122VV=乙甲交流与发现山青林场有甲、乙、丙、丁四块正方形苗圃已知甲苗圃的面积为S平方米(1)如果乙苗圃的面积比甲苗圃大25平方米,乙苗圃的边长是多
2、少?(2)如果丙苗圃的面积为甲苗圃的2倍,丙苗圃的边长是多少?(3)如果丁苗圃的面积是甲苗圃的面积的 ,丁苗圃的边长是多少?25+S米. 米.S2(4)你发现上面各题的答案有什么共同特点?与学过的算术平方根等相比有什么共同点?与同学交流 米 式子 , , 与算术平方根的共同点:psS225+S都是形如 的式子,aa都是非负数.一般地,形如 (a0)的式子叫做二次根式a其中a为整式或分式,a叫做被开方式举出几个二次根式的例子:如: ,知识点1:二次根式下列各式是二次根式吗? (m0),(x,y 异号)在实数范围内,负数没有平方根火眼金睛思考: 若 是二次根式,则字母x需要满足什么条件呢? 强调:
3、 要保证二次根式有意义,就要使根号下的数大于等于0。 由2x-10,得即当x取大于或等于 的实数时,式子 有意义2112-x例1 x取什么实数时,二次根式 有意义?12-x解:二次根式 有意义的条件是2x-1012-x例题讲解21x例2、x是怎样的实数时,下列各式在实数范围 内有意义? (1)(2)解:(1)要使 在实数范围内有意义 则x-3 0 解得x 3 当x 3时, 在实数范围内有意义(2)解:要使 在实数范围内有意义则1-0 x0解得x0且x1当x0且x1时, 在实数范围内有意义x取何值时,下列各式在实数范围内有意义?(1) (2)(3) (4)(5) + 快速口答知识点2 二次根式的
4、性质1.a0, 0 ( 双重非负性)的算术平方根表示因为)0(,aaa总是一个非负数所以,)0(aa即).0(0aa练习:若 + =0,求a、b的值。解: ( x+2 )2 0, 0,(x+2)2+ =0 (x+2 )2 =0, =0 解得x=-2 y=0 xy =(-2)0=1例3:已知(x+2)2 + =0,求xy=?a=1,b=7求a,b的值已知小试身手例4.根据算术平方根的意义填空:知识点2 二次根式的性质 2. (a0)例5 计算:解:;)16)(1(2)16)(1(2;)73)(2(2)73)(2(2;)85.0)(3(2-)85.0)(3(2-).5()5)(4(2-+aa=16;;6379)7(322=;85.0)85.0(2=)5)(4(+a2.)5(-a=a5例题讲解快速抢答;)12)(1(2;)54)(2(2;)6.3)(3(2-)1)(4(2+x212803.6x2+1把式子)0()(2=aaa反过来,就得到).0()(2=aaa把下列非负数写成一个数的平方的形式: (1)5 (2)3.4 (3) (4)x(x0)162)5(2)4.3( 2)61(2)(x 利用这个式子,可以把任何一个非负数写 成一个数的平方的形式。知识点3.性质公式 的逆用)0()(2=aaa小试牛刀 ?
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 货车租赁合同协议
- 临时教师聘用合同
- 亲子乐园门票预订合同
- 中英双语合作开发合同范本(Co-development Agreement)
- 个人借款合同格式范例大全
- 三方就业合同模板:学生、学校、企业
- 两人合作创业合同书样本
- 个人购销合同催款函范本
- 临时用工合同模板样本
- 个人劳动合同范本:合同格式详解
- 北方、南方戏剧圈的杂剧文档
- 灯谜大全及答案1000个
- 白酒销售经理述职报告
- 六年级英语上册综合测试卷(一)附答案
- 部编小学语文(6年级下册第6单元)作业设计
- 洗衣机事业部精益降本总结及规划 -美的集团制造年会
- 2015-2022年湖南高速铁路职业技术学院高职单招语文/数学/英语笔试参考题库含答案解析
- 2023年菏泽医学专科学校单招综合素质模拟试题及答案解析
- 铝合金门窗设计说明
- 小学数学-三角形面积计算公式的推导教学设计学情分析教材分析课后反思
- 人教版数学八年级下册同步练习(含答案)
评论
0/150
提交评论