版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1随机抽取某商场4月份5天的营业额(单位:万元)分别为3.4,2.9,3.0,3.1,2.6,则这个商场4月份的营业额大约是( )A90万元B450万元C3万元D15万元2数学课外兴趣小组的同学们要测量被池塘相隔的两棵树A,B的距离,他们设计了
2、如图的测量方案:从树A沿着垂直于AB的方向走到E,再从E沿着垂直于AE的方向走到F,C为AE上一点,其中4位同学分别测得四组数据:AC,ACB;EF,DE,AD;CD,ACB,ADB;F,ADB,FB其中能根据所测数据求得A,B两树距离的有( )A1组B2组C3组D4组3如图,将绕点逆时针旋转,旋转角为,得到,这时点,恰好在同一直线上,下列结论一定正确的是( )ABCD4如图,已知是的直径,则的度数为( )ABCD5已知一个菱形的周长是,两条对角线长的比是,则这个菱形的面积是( )ABCD6一次函数y=ax+b与反比例函数,其中ab0,a、b为常数,它们在同一坐标系中的图象可以是()ABCD7
3、定义:在等腰三角形中,底边与腰的比叫做顶角的正对,顶角的正对记作,即底边:腰.如图,在中,.则( )ABCD8如图,在中, 将绕点逆时针旋转得到,其中点与 点是对应点,且点在同一条直线上;则的长为( )ABCD9已知下列命题:对角线互相平分的四边形是平行四边形;内错角相等;对角线互相垂直的四边形是菱形;矩形的对角线相等,其中假命题有( )A个B个C个D个10生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互增了182件如果全组共有x名同学,则根据题意列出的方程是( )Ax(x+1)=182Bx(x+1)=182Cx(x1)=182Dx(x1)=1822二、填空题(每小题3分
4、,共24分)11用半径为3cm,圆心角是120的扇形围成一个圆锥的侧面,则这个圆锥的底面半径等于_cm12抛物线y4x23x与y轴的交点坐标是_13已知关于x的方程的一个根为2,则这个方程的另一个根是14如图,已知在矩形ABCD中,点E在边BC上,BE2CE,将矩形沿着过点E的直线翻折后,点C,D分别落在边BC下方的点C,D处,且点C,D,B在同一条直线上,折痕与边AD交于点F,DF与BE交于点G.设ABt,那么EFG的周长为_(用含t的代数式表示)15小亮和他弟弟在阳光下散步,小亮的身高为米,他的影子长米若此时他的弟弟的影子长为米,则弟弟的身高为_米16如图,在O中,分别将弧AB、弧CD沿两
5、条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,若O的半径为4,则四边形ABCD的面积是_17抛物线yax2+bx+c经过点A(4,0),B(3,0)两点,则关于x的一元二次方程ax2+bx+c0的解是_18一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为_三、解答题(共66分)19(10分)已知,如图在RtABC中,B90,AB6cm,BC8cm,点P由点A出发沿AB方向向终点B匀速移动,速度为1cm/s,点Q由点B出发沿BC方向向终点C匀速移动,速度为2cm/s如果动点P,Q同时从A,B出发,当P或Q到达终点时运动停止几秒后,以
6、Q,B,P为顶点的三角形与ABC相似?20(6分)解方程(2x+1)2=3(2x+1)21(6分)如图,正方形ABCD中,M为BC上一点,F是AM的中点,EFAM,垂足为F,交AD的延长线于点E,交DC于点N(1)求证:ABMEFA;(2)若AB=12,BM=5,求DE的长22(8分)齐齐哈尔新玛特商场购进大嘴猴品牌服装每件成本为100元,在试销过程中发现:销售单价元,与每天销售量(件)之间满足如图所示的关系(1)求出与之间的函数关系式(不用写出自变量的取值范围);(2)写出每天的利润(元)与销售单价之间的函数解析式;并确定将售价定为多少元时,能使每天的利润最大,最大利润是多少?23(8分)已
7、知为的外接圆,点是的内心,的延长线交于点,交于点(1)如图1,求证:(2)如图2,为的直径若,求的长24(8分)如图,已知:在ABC中,ABAC,BD是AC边上的中线,AB13,BC10,(1)求ABC的面积;(2)求tanDBC的值25(10分)已知关于的方程有实数根(1)求的取值范围;(2)若该方程有两个实数根,分别为和,当时,求的值26(10分)如图,在矩形ABCD中,AB3,BC4,点E是线段AC上的一个动点且k(0k1),点F在线段BC上,且DEFH为矩形;过点E作MNBC,分别交AD,BC于点M,N(1)求证:MEDNFE;(2)当EFFC时,求k的值(3)当矩形EFHD的面积最小
8、时,求k的值,并求出矩形EFHD面积的最小值参考答案一、选择题(每小题3分,共30分)1、A【解析】所以4月份营业额约为33090(万元)2、C【分析】根据三角函数的定义及相似三角形的判定定理及性质对各选项逐一判断即可得答案【详解】已知ACB的度数和AC的长,利用ACB的正切可求出AB的长,故能求得A,B两树距离,AB/EF,ADBEDF,故能求得A,B两树距离,设ACx,ADCD+x,AB,AB;已知CD,ACB,ADB,可求出x,然后可得出AB,故能求得A,B两树距离,已知F,ADB,FB不能求得A,B两树距离,故求得A,B两树距离,综上所述:求得A,B两树距离的有,共3个,故选:C【点睛
9、】本题考查相似三角形的判定与性质及解直角三角形的应用,解答道题的关键是将实际问题转化为数学问题,本题只要把实际问题抽象到相似三角形,解直角三角形即可求出3、C【分析】由旋转的性质可得AB=AD,BAD=,由等腰三角形的性质可求解【详解】将ABC绕点A逆时针旋转,旋转角为,AB=AD,BAD=,B= 故选:C【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键4、B【分析】根据同弧所对的圆周角相等可得E=B=40,再根据直径所对的圆周角是直角得到ACE=90,最后根据直角三角形两锐角互余可得结论【详解】在O中,E与B所对的弧是, E=B=40,AE是O的直径,ACE=9
10、0,AEC=90-E=90-40=50,故选:B【点睛】此题主要考查了圆周角定理以及直径所对的圆周角是直角和直角三角形两锐角互余等知识,求出E=40,是解此题的关键5、D【分析】首先可求出菱形的边长,设菱形的两对角线分别为8x,6x,由勾股定理求出x的值,从而可得两条对角线的长,根据菱形的面积等于对角线乘积的一半列式计算即可求解【详解】解:菱形的边长是20cm,菱形的边长=204=5cm,菱形的两条对角线长的比是,设菱形的两对角线分别为8x,6x,菱形的对角线互相平分,对角线的一半分别为4x,3x,由勾股定理得:,解得:x=1,菱形的两对角线分别为8cm,6cm,菱形的面积=cm2,故选:D【
11、点睛】本题考查了菱形的性质、勾股定理,主要理由菱形的对角线互相平分的性质,以及菱形的面积等于对角线乘积的一半6、C【分析】根据一次函数的位置确定a、b的大小,看是否符合ab0,交y轴负半轴,则b0,满足ab0,反比例函数y= 的图象过一、三象限,所以此选项不正确;B. 由一次函数图象过二、四象限,得a0,满足ab0,ab0,交y轴负半轴,则b0,满足ab0,反比例函数y=的图象过一、三象限,所以此选项正确;D. 由一次函数图象过二、四象限,得a0,交y轴负半轴,则b0,与已知相矛盾所以此选项不正确;故选C.【点睛】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a、b的大小7、C【分
12、析】证明ABC是等腰直角三角形即可解决问题【详解】解:AB=AC,B=C,A=2B,B=C=45,A=90,在RtABC中,BC=AC,sinBsadA=,故选:C【点睛】本题考查解直角三角形,等腰直角三角形的判定和性质三角函数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型8、A【分析】根据旋转的性质说明ACC是等腰直角三角形,且CAC=90,理由勾股定理求出CC值,最后利用BC=CC-CB即可【详解】解:根据旋转的性质可知AC=AC,ACB=ACB=45,BC=BC=1,ACC是等腰直角三角形,且CAC=90,CC=4,BC=4-1=1故选:A【点睛】本题主要考查了
13、旋转的性质、勾股定理,在解决旋转问题时,要借助旋转的性质找到旋转角和旋转后对应的量9、B【分析】利用平行四边形的判定、平行线的性质、菱形的判定和矩形的性质分别对各命题进行判断即可【详解】解:根据平行四边形的判定定理可知,对角线互相平分的四边形是平行四边形,故是真命题;两直线平行,内错角相等,故为假命题;根据菱形的判定定理,对角线互相垂直且平分的四边形是菱形,故是假命题;根据矩形的性质,矩形的对角线相等,故是真命题;故选:B【点睛】本题考查了命题与定理的知识,解题的关键是熟悉平行四边形的判定、平行线的性质、菱形的判定及矩形的性质,难度不大10、C【解析】试题分析:先求每名同学赠的标本,再求x名同
14、学赠的标本,而已知全组共互赠了182件,故根据等量关系可得到方程每名同学所赠的标本为:(x-1)件,那么x名同学共赠:x(x-1)件,根据题意可列方程:x(x-1)=182,故选C.考点:本题考查的是根据实际问题列一元二次方程点评:找到关键描述语,找到等量关系,然后准确的列出方程是解答本题的关键二、填空题(每小题3分,共24分)11、1【分析】把扇形的弧长和圆锥底面周长作为相等关系,列方程求解【详解】设此圆锥的底面半径为r根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:2r,解得:r=1故答案为1【点睛】本题考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长
15、等于圆锥底面周长,扇形的半径等于圆锥的母线长12、 (0,0)【解析】根据y轴上的点的特点:横坐标为0.可代入求得y=0,因此可得抛物线y4x23x与y轴的交点坐标是(0,0).故答案为(0,0).13、1【解析】方程的一个根为2,设另一个为a,2a=6,解得:a=114、2t【分析】根据翻折的性质,可得CE=,再根据直角三角形30度所对的直角边等于斜边的一半判断出,然后求出,根据对顶角相等可得,根据平行线的性质得到,再求出,然后判断出是等边三角形,根据等边三角形的性质表示出EF,即可解题【详解】由翻折的性质得,CE=是等边三角形,的周长=故答案为:【点睛】本题考查折叠问题、等边三角形的判定与
16、性质、含30度的直角三角形、平行线的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键15、1.4【解析】同一时刻物高与影长成正比例,1.75:2=弟弟的身高:1.6,弟弟的身高为1.4米故答案是:1.4.16、【分析】作OHAB,延长OH交于E,反向延长OH交CD于G,交于F,连接OA、OB、OC、OD,根据折叠的对称性及三角形全等,证明AB=CD,又因ABCD,所以四边形ABCD是平行四边形,由平行四边形面积公式即可得解【详解】如图,作OHAB,垂足为H,延长OH交于E,反向延长OH交CD于G,交于F,连接OA、OB、OC、OD,则OA=OB=OC=OD=OE=OF=4,弧AB、弧C
17、D沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,OH=HE=,OG=GF=,即OH=OG,又OB=OD,RtOHBRtOGD,HB=GD,同理,可得AH=CG= HB=GDAB=CD又ABCD四边形ABCD是平行四边形,在RtOHA中,由勾股定理得:AH=AB=四边形ABCD的面积=ABGH=故答案为: 【点睛】本题考查圆中折叠的对称性及平行四边形的证明,关键是作辅助线,本题也可通过边、角关系证出四边形ABCD是矩形17、4或1【分析】根据二次函数与轴的交点的横坐标即为一元二次方程根的性质,即可求得方程的解.【详解】抛物线yax2+bx+c经过点A(4,0),B(1,0)两点,则ax2
18、+bx+c0的解是x4或1,故答案为:4或1【点睛】本题考查二次函数与轴的交点和一元二次方程根的关系,属基础题.18、【解析】分析:首先确定阴影的面积在整个面积中占的比例,根据这个比例即可求出蚂蚁停在阴影部分的概率详解:正方形被等分成9份,其中阴影方格占4份,当蚂蚁停下时,停在地板中阴影部分的概率为,故答案为点睛:此题主要考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比三、解答题(共66分)19、2.4秒或秒【分析】设t秒后,以Q,B,P为顶点的三角形与ABC相似;则PB=(6-t)cm,BQ=2tcm,分两种情况:当时,当时,分别解方程即可得出结果【详解】解:设t秒后,以Q,B,
19、P为顶点的三角形与ABC相似,则PB(6t)cm,BQ2tcm,B90,分两种情况:当时,即,解得:t2.4;当时,即,解得:t;综上所述:2.4秒或秒时,以Q,B,P为顶点的三角形与ABC相似【点睛】本题主要考查了相似三角形的判定,掌握相似三角形的判定是解题的关键.20、x1=-,x2=1【解析】试题分析:分解因式得出(2x+1)(2x+13)=0,推出方程2x+1=0,2x+13=0,求出方程的解即可试题解析:解:整理得:(2x+1)23(2x+1)=0,分解因式得:(2x+1)(2x+13)=0,即2x+1=0,2x+13=0,解得:x1=,x2=1点睛:本题考查了解一元一次方程和解一元
20、二次方程的应用,解答此题的关键是把一元二次方程转化成解一元一次方程,题目比较典型,难度不大21、(1)见解析;(2)4.1【详解】试题分析:(1)由正方形的性质得出AB=AD,B=10,ADBC,得出AMB=EAF,再由B=AFE,即可得出结论;(2)由勾股定理求出AM,得出AF,由ABMEFA得出比例式,求出AE,即可得出DE的长试题解析:(1)四边形ABCD是正方形,AB=AD,B=10,ADBC,AMB=EAF,又EFAM,AFE=10,B=AFE,ABMEFA;(2)B=10,AB=12,BM=5,AM=13,AD=12,F是AM的中点,AF=AM=6.5,ABMEFA,即,AE=16
21、.1,DE=AE-AD=4.1考点:1.相似三角形的判定与性质;2.正方形的性质22、(1);(2),售价定为140元件,每天获得最大利润为1600元【分析】(1)设y与x之间的函数关系式为ykx+b(k0),根据所给函数图象列出关于kb的关系式,求出k、b的值即可;(2)把每天的利润W与销售单价x之间的函数关系式化为二次函数顶点式的形式,由此关系式即可得出结论【详解】解:解:(1)设y与x之间的函数关系式为ykx+b(k0),由所给函数图象可知:,解得:,故y与x的函数关系式为;(2),W,当x140时,W最大1600,售价定为140元/件时,每天最大利润W1600元【点睛】本题考查的是二次
22、函数的应用,根据题意列出关于k、b的关系式是解答此题的关键23、(1)证明见解析;(2)【分析】(1)连接半径,根据内心的性质、圆的基本性质以及三角形外角的性质求得,即可得证结论;(2)连接半径,由为的直径、点是的内心以及等腰三角形的三线合一可得、,然后依次解、即可得出结论【详解】解:(1)证明:连接,如图:是的内心,(2)连接,如图:是直径,平分且,在中,在中,由(1)可知,故答案是:(1)证明见解析;(2)【点睛】本题考查了三角形内心的性质、圆的一些基本性质、三角形外角的性质、等腰三角形的性质、垂径定理、锐角三角函数以及勾股定理等知识点,难度不大,属于中档题型24、(1)60;(2)【分析
23、】(1)作等腰三角形底边上的高AH并根据勾股定理求出,再根据三角形面积公式即可求解;(2)方法一:作等腰三角形底边上的高AH并根据勾股定理求出,与BD交点为E,则E是三角形的重心,再根据三角形重心的性质求出EH,DBC的正切值即可求出方法二:过点A、D分别作AHBC、DFBC,垂足分别为点H、F,先根据勾股定理求出AH的长,再根据三角形中位线定理求出DF的长,BF的长就等于BC的,DBC的正切值即可求出【详解】解:(1)过点A作AHBC,垂足为点H,交BD于点EABAC13,AHBC,BC10BH5在RtABH中,AH=12,ABC的面积;(2)方法一:过点A作AHBC,垂足为点H,交BD于点EABAC13,AHBC,BC10BH5在RtABH中,AH=12BD是AC边上的中线所以点E是ABC的重心EH4,在RtEBH中,tanDBC方法二:过点A、D分别作AHBC、DFBC,垂足分别为点H、FABAC13,AHBC,BC10BHCH=5在RtABH中,AH=12AHBC、DFBCAHDF,D为AC中点,DFAH6, BF在RtDBF中,tanDBC【点睛】本题主要考查解直角三角形,掌握勾股定理及锐角三角函数的定义是解题的关键.25、(1);(1)1.【分析】(1)根据方程有实数根,可分为k=0与k0两种情
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度普通货物运输合同范本范例
- 2024年度人力资源服务合同服务内容、员工权益及合同期限
- 2024年度保险合同的理赔范围限定
- 2024年度壁画艺术衍生品开发与销售合同
- 车载手机支架市场需求与消费特点分析
- 美容用局部皮肤喷雾市场需求与消费特点分析
- 2024年度小学操场环保施工合同
- 2024年度商标许可使用及转让合同
- 2024年度信息技术研发合同
- 2024年度新能源汽车租赁押金及还款合同
- 习作:我们眼中的缤纷世界2套(部编版三上)课件
- 贵州·贵阳·山水黔城
- 溺水和中毒等突发情况处理课件
- 诊断学(实验)心电图课件
- 小学生血液知识讲座课件
- 第23课《范进中举》课堂实录-部编版语文九年级上册
- 华夏基石:目标管理与绩效管理体系构建共课件
- 湖北省宜昌市基层诊所医疗机构卫生院社区卫生服务中心村卫生室地址信息
- 五年级上学期家长会课件
- 《旅游线路设计》课程大纲
- Unit 1 Reading and thinking说课课件 高中英语人教版必修第一册
评论
0/150
提交评论