![福建省永定区第二初级中学2022-2023学年九年级数学第一学期期末联考模拟试题含解析_第1页](http://file4.renrendoc.com/view/58404b6909fb7fbd36f3f014a2f7ae57/58404b6909fb7fbd36f3f014a2f7ae571.gif)
![福建省永定区第二初级中学2022-2023学年九年级数学第一学期期末联考模拟试题含解析_第2页](http://file4.renrendoc.com/view/58404b6909fb7fbd36f3f014a2f7ae57/58404b6909fb7fbd36f3f014a2f7ae572.gif)
![福建省永定区第二初级中学2022-2023学年九年级数学第一学期期末联考模拟试题含解析_第3页](http://file4.renrendoc.com/view/58404b6909fb7fbd36f3f014a2f7ae57/58404b6909fb7fbd36f3f014a2f7ae573.gif)
![福建省永定区第二初级中学2022-2023学年九年级数学第一学期期末联考模拟试题含解析_第4页](http://file4.renrendoc.com/view/58404b6909fb7fbd36f3f014a2f7ae57/58404b6909fb7fbd36f3f014a2f7ae574.gif)
![福建省永定区第二初级中学2022-2023学年九年级数学第一学期期末联考模拟试题含解析_第5页](http://file4.renrendoc.com/view/58404b6909fb7fbd36f3f014a2f7ae57/58404b6909fb7fbd36f3f014a2f7ae575.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1一元二次方程x24x+50的根的情况是()A没有实数根B只有一个实数根C有两个相等的实数根D有两个不相等的实数根2如图,在矩形中,的平分线交边于点,于点,连接并延长交边于点,连接交于点,给出下列命题:(1)(2)(3)(4)其中正确命题的个数是(
2、 )ABCD3如图,双曲线的一个分支为( )ABCD4用配方法解方程x2+4x+1=0时,方程可变形为 ( )ABCD5已知,若,则它们的周长之比是( )A4:9B16:81C9:4D2:36二次函数yx22x+2的顶点坐标是()A(1,1)B(2,2)C(1,2)D(1,3)7如图,点A,B是反比例函数y=(x0)图象上的两点,过点A,B分别作ACx轴于点C,BDx轴于点D,连接OA、BC,已知点C(2,0),BD=3,SBCD=3,则SAOC为( )A2B3C4D68二次函数y3(x2)21的图像顶点坐标是( )A(2,1)B(2,1)C(2,1)D(2,1)9若抛物线ykx22x1与x轴
3、有两个不同的交点,则k的取值范围为()Ak1Bk1Ck1且k0Dk1且k010如图,一个圆柱体在正方体上沿虚线从左向右平移,平移过程中不变的是()A主视图B左视图C俯视图D主视图和俯视图11如图所示,把一张矩形纸片对折,折痕为AB,再把以AB的中点O为顶点的平角三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开平铺后得到的平面图形一定是A正三角形B正方形C正五边形D正六边形12在平面直角坐标系中,以原点O为位似中心,把ABC放大得到A1B1C1,使它们的相似比为1:2,若点A的坐标为(2,2),则它的对应点A1的坐标一定是()A(2,2)B
4、(1,1)C(4,4)D(4,4)或(4,4)二、填空题(每题4分,共24分)13如图,圆锥的母线长OA=6,底面圆的半径为,一只小虫在圆线底面的点A处绕圆锥侧面一周又回到点A处,则小虫所走的最短路程为_(结果保留根号)14如图,已知电流在一定时间段内正常通过电子元件“”的概率是12,在一定时间段内,A,B之间电流能够正常通过的概率为 15若m是方程2x23x10的一个根,则6m29m+2020的值为_16算学宝鉴中记载了我国南宋数学家杨辉提出的一个问题:直田积八百六十四步,只云阔不及长一十二步问阔及长各几步?大意是“一个矩形田地的面积等于864平方步,它的宽比长少12步,问长与宽各多少步?”
5、若设矩形田地的宽为x步,则所列方程为_17边心距是的正六边形的面积为_18如图,抛物线y1=a(x+2)2+m过原点,与抛物线y2=(x3)2+n交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C下列结论:两条抛物线的对称轴距离为5;x=0时,y2=5;当x3时,y1y20;y轴是线段BC的中垂线正确结论是_(填写正确结论的序号) 三、解答题(共78分)19(8分)如图,已知二次函数G1:yax2+bx+c(a0)的图象过点(1,0)和(0,3),对称轴为直线x1(1)求二次函数G1的解析式;(2)当1x2时,求函数G1中y的取值范围;(3)将G1先向右平移3个单位,再向下平
6、移2个单位,得到新二次函数G2,则函数G2的解析式是 (4)当直线yn与G1、G2的图象共有4个公共点时,直接写出n的取值范围20(8分)将ABC绕点B逆时针旋转到ABC,使A、B、C在同一直线上,若BCA=90,BAC=30,AB=4cm,求图中阴影部分的面积21(8分)如图,在ABCD中,点E是边AD上一点,延长CE到点F,使FBCDCE,且FB与AD相交于点G(1)求证:DF;(2)用直尺和圆规在边AD上作出一点P,使BPCCDP,并加以证明(作图要求:保留痕迹,不写作法)22(10分)如图.已知为半圆的直径,为弦,且平分.(1)若,求的度数:(2)若,求的长.23(10分)已知关于x的
7、一元二次方程(k1)x2+4x+1=1(1)若此方程的一个根为1,求k的值;(2)若此一元二次方程有实数根,求k的取值范围24(10分)已知:二次函数,求证:无论为任何实数,该二次函数的图象与轴都在两个交点;25(12分)如图,在菱形中,点在对角线上,延长交于点.(1)求证:;(2)已知点在边上,请以为边,用尺规作一个与相似,并使得点在上.(只须作出一个,保留作图痕迹,不写作法)26如图,把点以原点为中心,分别逆时针旋转,得到点,(1)画出旋转后的图形,写出点,的坐标,并顺次连接、,各点;(2)求出四边形的面积;(3)结合(1),若把点绕原点逆时针旋转到点,则点的坐标是什么?参考答案一、选择题
8、(每题4分,共48分)1、A【解析】首先求出一元二次方程根的判别式,然后结合选项进行判断即可【详解】解:一元二次方程,即0,一元二次方程无实数根,故选A【点睛】本题主要考查了根的判别式的知识,解题关键是要掌握一元二次方程根的情况与判别式的关系:(1)0方程有两个不相等的实数根;(2)0方程有两个相等的实数根;(3)0方程没有实数根2、D【分析】根据矩形的性质,勾股定理,等腰三角形的判定与性质以及全等三角形的判定与性质逐一对各命题进行分析即可得出答案.【详解】(1)在矩形ABCD中, DE平分 是等腰直角三角形 是等腰直角三角形 ,故(1)正确;(2),故(2)正确;(3) ,故(3)正确;(4
9、) 在和中, 在和中, ,故(4)正确故选D【点睛】本题考查了矩形的性质,勾股定理,全等三角形的判定及性质,等腰三角形的性质等,熟练掌握和灵活运用相关知识是解题的关键.3、D【解析】在中,k=80,它的两个分支分别位于第一、三象限,排除;又当=2时,=4,排除;所以应该是故选D4、C【解析】根据配方法的定义即可得到答案.【详解】将原式变形可得:x24x430,即(x2)23,故答案选C.【点睛】本题主要考查了配方法解一元二次方程,解本题的要点在于将左边配成完全平方式,右边化为常数.5、A【分析】根据相似三角形周长的比等于相似比解答即可【详解】ABCDEF,AC:DF=4:9,ABC与DEF的相
10、似比为4:9,ABC与DEF的周长之比为4:9,故选:A【点睛】此题考查相似三角形性质,掌握相似三角形周长的比等于相似比是解题的关键6、A【分析】根据顶点坐标公式,可得答案【详解】解:的顶点横坐标是,纵坐标是,的顶点坐标是故选A【点睛】本题考查了二次函数的性质,二次函数的顶点坐标是7、D【分析】先求CD长度,再求点B坐标,再求函数解析式,可求得面积.【详解】因为,BD=3,SBCD=3,所以,,解得,CD=2,因为,C(2,0)所以,OD=4,所以,B(4,3)把B(4,3)代入y=,得k=12,所以,y=所以,SAOC= 故选D【点睛】本题考核知识点:反比例函数. 解题关键点:熟记反比例函数
11、性质.8、D【分析】由二次函数的顶点式,即可得出顶点坐标【详解】解:二次函数为y=a(x-h)2+k顶点坐标是(h,k),二次函数y=3(x-2)2-1的图象的顶点坐标是(2,-1)故选:D【点睛】此题考查了二次函数的性质,二次函数为y=a(x-h)2+k顶点坐标是(h,k)9、C【分析】根据抛物线ykx22x1与x轴有两个不同的交点,得出b24ac0,进而求出k的取值范围【详解】二次函数ykx22x1的图象与x轴有两个交点,b24ac(2)24k(1)4+4k0,k1,抛物线ykx22x1为二次函数,k0,则k的取值范围为k1且k0,故选C.【点睛】本题考查了二次函数yax2+bx+c的图象
12、与x轴交点的个数的判断,熟练掌握抛物线与x轴交点的个数与b2-4ac的关系是解题的关键.注意二次项系数不等于0.10、B【解析】主视图是从正面观察得到的图形,左视图是从左侧面观察得到的图形,俯视图是从上面观察得到的图形,结合图形即可作出判断解:根据图形,可得:平移过程中不变的是的左视图,变化的是主视图和俯视图故选B11、D【解析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现【详解】由第二个图形可知:AOB被平分成了三个角,每个角为60,它将成为展开得到图形的中心角,那么所剪出的平面图形是36060=6边形故选D【点睛】本题考查了剪纸问题以及培养学生的动手能力及空间想象能力,此类问题
13、动手操作是解题的关键12、D【解析】根据如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k进行解答【详解】以原点O为位似中心,相似比为:1:2,把ABC放大得到A1B1C1,点A的坐标为(2,2),则它的对应点A1的坐标一定为:(4,4)或(-4,-4),故选D【点睛】本题考查了位似变换:位似图形与坐标,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k二、填空题(每题4分,共24分)13、6【分析】利用圆锥的底面周长等于侧面展开图的弧长可得圆锥侧面展开图的圆心角,求出侧面展开图中两点间的距离即为最短距离【
14、详解】底面圆的半径为,圆锥的底面周长为23,设圆锥的侧面展开图的圆心角为n,解得n90,如图,AA的长就是小虫所走的最短路程,O=90,OA=OA=6,AA故答案为:6【点睛】本题考查了圆锥的计算,考查圆锥侧面展开图中两点间距离的求法;把立体几何转化为平面几何来求是解决本题的突破点14、34.【解析】根据题意,电流在一定时间段内正常通过电子元件的概率是12,即某一个电子元件不正常工作的概率为12,则两个元件同时不正常工作的概率为14;故在一定时间段内AB之间电流能够正常通过的概率为1-14=34.故答案为:34.15、1【分析】根据一元二次方程的解的定义即可求出答案【详解】解:由题意可知:2m
15、23m10,2m23m1,原式3(2m23m)+20203+2020=1故答案为:1【点睛】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型16、【分析】如果设矩形田地的宽为x步,那么长就应该是(x+12)步,根据面积为864,即可得出方程【详解】解:设矩形田地的宽为x步,那么长就应该是(x+12)步,根据面积公式,得:;故答案为:.【点睛】本题为面积问题,考查了由实际问题抽象出一元二次方程,掌握好面积公式即可进行正确解答;矩形面积=矩形的长矩形的宽17、【分析】根据题意画出图形,先求出AOB的度数,证明AOB是等边三角形,得出AB=OA,再根据直角三角形
16、的性质求出OA的长,再根据S六边形=6SAOB即可得出结论【详解】解:图中是正六边形,AOB=60OA=OB,OAB是等边三角形OA=OB=AB,ODAB,OD=,OA=AB=4,SAOB=ABOD=2=,正六边形的面积=6SAOB=6=6故答案为:6【点睛】本题考查的是正多边形和圆,熟知正六边形的性质并求出AOB的面积是解答此题的关键18、【分析】根据题意分别求出两个二次函数的解析式,根据函数的对称轴判定;令x=0,求出y2的值,比较判定;观察图象,判定;令y=3,求出A、B、C的横坐标,然后求出AB、AC的长,判定【详解】抛物线y1=a(x+2)2+m与抛物线y2=(x3)2+n的对称轴分
17、别为x=-2,x=3,两条抛物线的对称轴距离为5,故正确;抛物线y2=(x3)2+n交于点A(1,3),2+n=3,即n=1;y2=(x3)2+1,把x=0代入y2=(x3)2+1得,y=5,错误;由图象可知,当x3时,y1y2,x3时,y1y20,正确;抛物线y1=a(x+2)2+m过原点和点A(1,3),解得 ,.令y1=3,则,解得x1=-5,x2=1,AB=1-(-5)=6,A(1,3),B(-5,3);令y2=3,则(x3)2+1=3,解得x1=5,x2=1,C(5,3),AC=5-1=4,BC=10,y轴是线段BC的中垂线,故正确故答案为【点睛】本题考查了二次函数的性质,主要利用了
18、待定系数法求二次函数解析式,已知函数值求自变量的值三、解答题(共78分)19、(1)二次函数G1的解析式为yx2+2x+3;(2)0y4;(3)y(x4)2+2;(4)n的取值范围为n2或n【分析】(1)由待定系数法可得根据题意得解得,则G1的解析式为yx2+2x+3;(2)将解析式化为顶点式,即y(x1)2+4,当x1时,y0;x2时,y3;而抛物线的顶点坐标为(1,4),且开口向下,所以当1x2时,0y4;(3)G1先向右平移3个单位,再向下平移2个单位,得到新二次函数G2,则函数G2的解析式是y(x13)2+42,即y(x4)2+2,故答案为y(x4)2+2;(4)解(x4)2+2(x1
19、)2+4得x,代入y(x1)2+4求得y,由图象可知当直线yn与G1、G2的图象共有4个公共点时,n的取值范围为n2或n【详解】解:(1)根据题意得解得,所以二次函数G1的解析式为yx2+2x+3;(2)因为y(x1)2+4,所以抛物线的顶点坐标为(1,4);当x1时,y0;x2时,y3;而抛物线的顶点坐标为(1,4),且开口向下,所以当1x2时,0y4;(3)G1先向右平移3个单位,再向下平移2个单位,得到新二次函数G2,则函数G2的解析式是y(x13)2+42,即y(x4)2+2,故答案为y(x4)2+2(4)解(x4)2+2(x1)2+4得x,代入y(x1)2+4求得y,由图象可知当直线
20、yn与G1、G2的图象共有4个公共点时,n的取值范围为n2或n【点睛】本题的考点是二次函数的综合应用.方法是根据题意及二次函数图像的性质解题.20、4cm2【分析】由旋转知ABCABC,两个三角形的面积SABC=SABC,将三角形ABC旋转到三角形ABC,变成一个扇面,阴影面积=大扇形ABA面积-小扇形COC面积即可【详解】解:BCA=90,BAC=30,AB=4,BC=2,CBC=120,ABA=120,由旋转知ABCABC SABC=SABC,S阴影=SABC+S扇形ABA-S扇形CBC-SABC= S扇形ABA-S扇形CBC=(42-22)=4(cm2)【点睛】本题考查阴影部分面积问题,
21、关键利用顺时针旋转ACB到ACB,补上ACB内部的阴影面积,使图形变成一个扇面,用扇形面积公式求出大扇形面积与小扇形面积21、(1)详见解析;(2)详见解析【分析】(1)根据四边形ABCD是平行四边形可得ADBC,FGEFBC,再根据已知FBCDCE,进而可得结论;(2)作三角形FBC的外接圆交AD于点P即可证明【详解】解:(1)四边形ABCD是平行四边形,ADBCFGEFBCFBCDCE,FGEDCEFEGDECDF(2)如图所示:点P即为所求作的点证明:作BC和BF的垂直平分线,交于点O,作FBC的外接圆,连接BO并延长交AD于点P,PCB90ADBCCPDPCB90由(1)得FDFBPC
22、DBPCBPCCDP【点睛】此题主要考查圆的综合应用,解题的关键是熟知平行四边形的性质、外接圆的性质及相似三角形的判定与性质.22、的度数为31;(2)的长为.【分析】(1)利用角平分线定义以及圆周角定义,进行分析求的度数:(2)由题意AD与BC相交于E,过E作垂线交AB于F,根据勾股定理求出AE,并利用相似比求出AD即可.【详解】解:(1)为半圆的直径,为弦,平分,,(2) 如图AD与BC相交于E,过E作垂线交AB于F,平分,AE为公共边,AC=AF,,BC=,设EC=EF=x,则EB=-x,BF=4,由勾股定理:,解得x=,即EC=EF=,为公共角,,解得.【点睛】本题结合圆相关性质考查相似三角形,结合角平分线定义以及圆周角定义和勾股定理进行分析判断求值.23、(2);(2)且【分析】(2)把x=2代入原方程求k值;(2)一元二次方程的判别式是非负数,且二次项系数不等于2【详解】解:(2)将x=2代入一元二次方程(k2)x2+4x+2=2得,(k2)4+2=2,解得k=4;(2)若一元二次方程(k2)x2+4x+2=2有实数根,=264(k2)2,且k22解得k5且k22,即k的取值范围是k5且k224、见解析【分析】计算判别式,并且配方得到=,然后根据判别式的意义得到结论【详解】二次函数,而,即为任何实数时, 方程都有两个不等的实数根,二次函数的图象与轴都有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 参加涉密培训承诺书范文范本
- 2025-2030全球止吠项圈行业调研及趋势分析报告
- 2025-2030全球新能源车和充电桩高压直流继电器行业调研及趋势分析报告
- 2025年全球及中国消费后回收 (PCR) 薄膜行业头部企业市场占有率及排名调研报告
- 2025-2030全球可回收金属瓶盖和封口行业调研及趋势分析报告
- 2025年全球及中国平板电动货车行业头部企业市场占有率及排名调研报告
- 2025年全球及中国制冷空调热力膨胀阀行业头部企业市场占有率及排名调研报告
- 2025-2030全球电动门遥控器行业调研及趋势分析报告
- 2025-2030全球高精度事件计时器行业调研及趋势分析报告
- 2025年全球及中国相机腕带行业头部企业市场占有率及排名调研报告
- 五年级上册寒假作业答案(人教版)
- 2025年中考语文复习热搜题速递之说明文阅读(2024年7月)
- 和达投资集团(杭州)有限公司招聘笔试冲刺题2025
- 政企单位春节元宵猜灯谜活动谜语200个(含谜底)
- 综治工作培训课件
- 2024年云网安全应知应会考试题库
- 2024年全国职业院校技能大赛高职组(智能节水系统设计与安装赛项)考试题库-下(多选、判断题)
- 2024年广东省事业单位考试真题及答案5
- 禅密功筑基功法
- SHT+3413-2019+石油化工石油气管道阻火器选用检验及验收标准
- 2024年云南省中考数学真题试卷及答案解析
评论
0/150
提交评论