2023届安徽省亳州市涡阳县数学九年级第一学期期末调研模拟试题含解析_第1页
2023届安徽省亳州市涡阳县数学九年级第一学期期末调研模拟试题含解析_第2页
2023届安徽省亳州市涡阳县数学九年级第一学期期末调研模拟试题含解析_第3页
2023届安徽省亳州市涡阳县数学九年级第一学期期末调研模拟试题含解析_第4页
2023届安徽省亳州市涡阳县数学九年级第一学期期末调研模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每题4分,共48分)1下列方程中,是一元二次方程的是( )ABCD2若一次函数 y=ax+b(a0)的图像与 x 轴交点坐标为(2,0),则抛物线y=ax2+bx+c的对称轴为( )A直线 x=1B直线 x=-1C直线 x=2D直线 x=-23下列结论中,错误的有:( )所有的菱形都相似;放大镜下的图形与原图形不一定相似;等

2、边三角形都相似;有一个角为110度的两个等腰三角形相似;所有的矩形不一定相似A1个B2个C3个D4个4如图,菱形ABCD的边长为6,ABC=120,M是BC边的一个三等分点,P是对角线AC上的动点,当PB+PM的值最小时,PM的长是()ABCD5如图,O 是等边ABC 的外接圆,其半径为 3,图中阴影部分的面积是( )ABC2D36如图,CD为O的弦,直径AB为4,ABCD于E,A30,则扇形BOC的面积为()ABCD7下列事件中,为必然事件的是( )A抛掷10枚质地均匀的硬币,5枚正面朝上B某种彩票的中奖概率为,那么买100张这种彩票会有10张中奖C抛掷一枚质地均匀的骰子,朝上一面的数字不大

3、于6D打开电视机,正在播放戏曲节目8如图,在平面直角坐标系中,正方形OABC的顶点O、B的坐标分别是(0,0),(2,0),则顶点C的坐标是()A(1,1)B(1,1)C(1,1)D(1,1)9如图,已知,的长为( )A4B6C8D1010方程1的解是()A1B2或1C2或3D311如图,将命题“在同圆中,相等的圆心角所对的弧相等,所对的弦也相等”改写成“已知求证”的形式,下列正确的是( )A已知:在O中,AOB=COD,弧AB=弧CD求证:AB=CDB已知:在O中,AOB=COD,弧AB=弧BC求证:AD=BCC已知:在O中,AOB=COD求证:弧AD=弧BC,AD=BCD已知:在O中,AO

4、B=COD求证:弧AB=弧CD,AB=CD12不透明袋子中有个红球和个蓝球,这些球除颜色外无其他差别,从袋子中随机取出个球是红球的概率是()ABCD二、填空题(每题4分,共24分)13如图,将的斜边AB绕点A顺时针旋转得到AE,直角边AC绕点A逆时针旋转得到AF,连结EF若,且,则_14如图,已知点P是ABC的重心,过P作AB的平行线DE,分别交AC于点D,交BC于点E,作DF/BC,交AB于点F,若四边形BEDF的面积为4,则ABC的面积为_15当x_时,|x2|2x16如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,PEF、PDC、PAB的面积分别为S、S1、S1若

5、S=1,则S1+S1= 17一个圆锥的母线长为5cm,底面圆半径为3 cm,则这个圆锥的侧面积是_ cm(结果保留)18已知:,则 的值是_.三、解答题(共78分)19(8分)某商场经销一种布鞋,已知这种布鞋的成本价为每双30元市场调查发现,这种布鞋每天的销售量y(单位:双)与销售单价x(单位:元)有如下关系:yx60(30 x60)设这种布鞋每天的销售利润为w元(1)求w与x之间的函数解析式;(2)这种布鞋销售单价定价为多少元时,每天的销售利润最大?最大利润是多少元?20(8分)某小学为每个班级配备了一种可以加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上

6、升10,待加热到100,饮水机自动停止加热,水温开始下降,水温y()和通电时间x(min)成反比例关系,直至水温降至室温,饮水机再次自动加热,重复上述过程设某天水温和室温为20,接通电源后,水温和时间的关系如下图所示,回答下列问题:(1)分别求出当0 x8和8xa时,y和x之间的关系式;(2)求出图中a的值;(3)李老师这天早上7:30将饮水机电源打开,若他想再8:10上课前能喝到不超过40的开水,问他需要在什么时间段内接水21(8分)已知:如图,在平行四边形ABCD中,过点C分别作AD、AB的垂线,交边AD、AB延长线于点E、F(1)求证:;(2)联结AC,如果,求证:22(10分)在ABC

7、中,ABAC,A60,点D是线段BC的中点,EDF120,DE与线段AB相交于点E,DF与线段AC(或AC的延长线)相交于点F(1)如图1,若DFAC,垂足为F,证明:DEDF(2)如图2,将EDF绕点D顺时针旋转一定的角度,DF仍与线段AC相交于点FDEDF仍然成立吗?说明理由(3)如图3,将EDF继续绕点D顺时针旋转一定的角度,使DF与线段AC的延长线相交于点F,DEDF仍然成立吗?说明理由23(10分)如图,点是线段上的任意一点(点不与点重合),分别以为边在直线的同侧作等边三角形和等边三角形,与相交于点,与相交于点(1)求证: ;(2)求证: ;(3)若的长为12cm,当点在线段上移动时

8、,是否存在这样的一点,使线段的长度最长?若存在,请确定点的位置并求出的长;若不存在,请说明理由24(10分)如图,在RtABC中,C90,AD平分BAC交BC于点D,DEAD交AB于E,EFBC交AC于F(1)求证:ACDADE;(2)求证:AD2ABAF;(3)作DGBC交AB于G,连接FG,若FG5,BE8,直接写出AD的长25(12分)已知:ABC在直角坐标平面内,三个顶点的坐标分别为B(3,4)、A(3,2)、C(1,0),正方形网格中,每个小正方形的边长是一个单位长度(1)画出ABC向下平移4个单位长度得到的A1B1C1,点C1的坐标是 ;(2)以点B为位似中心,在网格上画出A2B2

9、C2,使A2B2C2与ABC位似,且位似比为1:2,点C2的坐标是 ;(画出图形)(3)若M(a,b)为线段AC上任一点,写出点M的对应点M2的坐标 26如图,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(1,2)且与x轴相切于点B(1)当x=2时,求P的半径; (2)求y关于x的函数解析式;判断此函数图象的形状;并在图中画出此函数的图象; (3)当P的半径为1时,若P与以上(2)中所得函数图象相交于点C、D,其中交点D(m,n)在点C的右侧,请利用图,求cosAPD的大小参考答案一、选择题(每题4分,共48分)1、D【解析】只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二

10、次方程一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程【详解】解:A、是一元一次方程,故A不符合题意;B、是二元二次方程,故B不符合题意;C、是分式方程,故C不符合题意;D、是一元二次方程,故D符合题意;故选择:D.【点睛】此题主要考查了一元二次方程的定义,要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理如果能整理为ax2+bx+c=0(a0)的形式,则这个方程就为一元二次方程2、A【分析】先将(2,0)代入一次函数解析式yaxb,得到2ab0,即b-2a,再根据抛物线y=ax2+bx+c的对称轴为直线x即可求解【详解】解

11、:一次函数yaxb(a0)的图象与x轴的交点坐标为(2,0),2ab0,即b-2a,抛物线y=ax2+bx+c的对称轴为直线x故选:A【点睛】本题考查了一次函数图象上点的坐标特征及二次函数的性质,难度适中用到的知识点:点在函数的图象上,则点的坐标满足函数的解析式,二次函数yax2bxc的对称轴为直线x3、B【分析】根据相似多边形的定义判断,根据相似图形的定义判断,根据相似三角形的判定判断.【详解】相似多边形对应边成比例,对应角相等,菱形之间的对应角不一定相等,故错误;放大镜下的图形只是大小发生了变化,形状不变,所以一定相似,错误;等边三角形的角都是60,一定相似,正确;钝角只能是等腰三角形的顶

12、角,则底角只能是35,所以两个等腰三角形相似,正确;矩形之间的对应角相等,但是对应边不一定成比例,故正确.有2个错误,故选B.【点睛】本题考查相似图形的判定,注意相似三角形与相似多边形判定的区别.4、A【分析】如图,连接DP,BD,作DHBC于H当D、P、M共线时,PB+PM=DM的值最小,利用勾股定理求出DM,再利用平行线的性质即可解决问题【详解】如图,连接DP,BD,作DHBC于H四边形ABCD是菱形,ACBD,B、D关于AC对称,PB+PM=PD+PM,当D、P、M共线时,PB+PM=DM的值最小,CM=BC=2,ABC=120,DBC=ABD=60,DBC是等边三角形,BC=6,CM=

13、2,HM=1,DH=,在RtDMH中,DM=,CMAD,=,PM= DM=故选A【点睛】本题考查轴对称最短问题、菱形的性质、等边三角形的判定和性质、勾股定理、平行线分线段成比例定理等知识,解题的关键是灵活应用所学知识解决问题,属于中考常考题型5、D【分析】根据等边三角形的性质得到A=60,再利用圆周角定理得到BOC=120,然后根据扇形的面积公式计算图中阴影部分的面积即可【详解】ABC 为等边三角形,A=60,BOC=2A=120,图中阴影部分的面积= =3 故选D【点睛】本题考查了三角形的外接圆与外心、圆周角定理及扇形的面积公式,求得BOC=120是解决问题的关键6、B【解析】连接AC,由垂

14、径定理的CEDE,根据线段垂直平分线的性质得到ACAD,由等腰三角形的性质得到CABDAB30,由圆周角定理得到COB60,根据扇形面积的计算公式即可得到结论【详解】连接AC,CD为O的弦,AB是O的直径,CEDE,ABCD,ACAD,CABDAB30,COB60,扇形BOC的面积,故选B【点睛】本题考查的是扇形的面积的计算,圆周角定理,垂径定理,等腰三角形的性质,熟练掌握圆周角定理是解答此题的关键7、C【分析】根据必然事件的概念答题即可【详解】A: 抛掷10枚质地均匀的硬币,概率为0.5,但是不一定5枚正面朝上,故A错误;B: 概率是表示一个事件发生的可能性的大小,某种彩票的中奖概率为,是指

15、买张这种彩票会有0.1的 可能 性 中奖,故B错误;C:一枚质地均匀的骰子最大的数字是6,故C正确;D: .打开电视机,正在播放戏曲节目是随机事件,故D错误.故本题答案为:C【点睛】本题考查了必然事件的概念8、C【详解】解:由图可知,点B在第四象限各选项中在第四象限的只有C故选C9、D【分析】根据平行线分线段成比例得到,即,可计算出.【详解】解: ,即,解得.故选D【点睛】本题主要考查平行线段分线段成比例定理,熟练掌握并灵活运用定理是解题的关系.10、D【分析】找到最简公分母,去分母后得到关于x的一元二次方程,求解后,再检验是否有增根问题可解.【详解】解:去分母得2x(x24)x2,整理得x2

16、x60,解得x11,x2-2,检验:当x1时,x240,所以x1是原方程的解;当x-2时,x240,所以x2是原方程的增根,所以原方程的解为x1故选:D【点睛】本题考查了可化为一元二次方程的分式方程的解法,解答完成后要对方程的根进行检验,判定是否有增根产生.11、D【分析】根据命题的概念把原命题写成:“如果.求证.”的形式.【详解】解:“在同圆中,相等的圆心角所对的弧相等,所对的弦也相等”,改写成:已知:在O中,AOB=COD.求证:弧AB=弧CD,AB=CD故选:D【点睛】本题考查命题,掌握将命题改写为“如果.求证.”的形式,是解题的关键.12、A【解析】根据红球的个数以及球的总个数,直接利

17、用概率公式求解即可.【详解】因为共有个球,红球有个,所以,取出红球的概率为,故选A.【点睛】本题考查了简单的概率计算,正确把握概率的计算公式是解题的关键.二、填空题(每题4分,共24分)13、【分析】由旋转的性质可得,由勾股定理可求EF的长【详解】解:由旋转的性质可得,且,故答案为【点睛】本题考查了旋转的性质,勾股定理,灵活运用旋转的性质是本题的关键14、9【分析】连接CP交AB于点H,利用点P是重心得到=,得出SDEC=4SAFD,再由DE/BF证出,由此得到SDEC=SABC,继而得出S四边形BEDF=SABC,从而求出ABC的面积.【详解】如图,连接CP交AB于点H,点P是ABC的重心,

18、,DF/BE,AFDDEC,SDEC=4SAFD,DE/BF,DECABC,SABC=SDEC,S四边形BEDF=SABC,四边形BEDF的面积为4,SABC=9故答案为:9.【点睛】此题考察相似三角形的判定及性质,做题中首先明确重心的意义,连接CP交AB于点H是解题的关键,由此得到边的比例关系,再利用相似三角形的性质:面积的比等于相似比的平方推导出几部分图形的面积之间的关系,得到三角形ABC的面积.15、2【分析】由题意可知x2为负数或0,进而解出不等式即可得出答案.【详解】解:由|x2|2x,可得,解得:.故答案为:2.【点睛】本题考查绝对值性质和解不等式,熟练掌握绝对值性质和解不等式相关

19、知识是解题的关键.16、2【详解】E、F分别为PB、PC的中点,EFBCPEFPBCSPBC=4SPEF=8s又SPBC=S平行四边形ABCD,S1+S1=SPDCSPAB=S平行四边形ABCD=8s=217、15【分析】圆锥的侧面积=底面半径母线长,把相应数值代入即可求解【详解】解:圆锥的侧面积=35=15cm2故答案为:15【点睛】本题考查圆锥侧面积公式的运用,掌握公式是关键18、【分析】根据已知等式设a=2k,b=3k,代入式子可求出答案.【详解】解:由,可设a=2k,b=3k,(k0),故:,故答案:.【点睛】此题主要考查比例的性质,a、b都用k表示是解题的关键.三、解答题(共78分)

20、19、(1)w=x2+90 x1800;(2)这种布鞋销售单价定价为45元时,每天的销售利润最大,最大利润是,225元【分析】(1)由题意根据每天的销售利润W=每天的销售量每件产品的利润,即可列出w与x之间的函数解析式;(2)根据题意对w与x之间的函数解析式进行配方,即可求得答案【详解】解:(1)w=(x30)y=(x+60)(x30)=x2+30 x+60 x1800=x2+90 x1800,w与x之间的函数解析式w=x2+90 x1800; (2)根据题意得:w=x2+90 x1800=(x45)2+225,10,当x=45时,w有最大值,最大值是225;答:这种布鞋销售单价定价为45元时

21、,每天的销售利润最大,最大利润是225元.【点睛】本题考查二次函数的应用,根据题意得到每天的销售利润的关系式是解决本题的关键以及利用配方法或公式法求得二次函数的最值问题是常用的解题方法20、(1)当0 x8时,y=10 x+20;当8xa时,y=;(2)40;(3)要在7:508:10时间段内接水【分析】(1)当0 x8时,设yk1xb,将(0,20),(8,100)的坐标分别代入yk1xb,即可求得k1、b的值,从而得一次函数的解析式;当8xa时,设y,将(8,100)的坐标代入y,求得k2的值,即可得反比例函数的解析式;(2)把y20代入反比例函数的解析式,即可求得a值;(3)把y40代入

22、反比例函数的解析式,求得对应x的值,根据想喝到不低于40 的开水,结合函数图象求得x的取值范围,从而求得李老师接水的时间范围【详解】解: (1)当0 x8时,设yk1xb,将(0,20),(8,100)的坐标分别代入yk1xb,可求得k110,b20当0 x8时,y10 x20.当8xa时,设y,将(8,100)的坐标代入y,得k2800当8xa时,y.综上,当0 x8时,y10 x20;当8xa时,y(2)将y20代入y,解得x40,即a40.(3)当y40时,x20要想喝到不低于40 的开水,x需满足8x20,即李老师要在7:38到7:50之间接水【点睛】本题主要考查了一次函数及反比例函数

23、的应用题,是一个分段函数问题,分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际21、(1)见解析;(2)见解析【分析】(1)证明四边形是平行四边形即可解决问题(2)由,推出,可得,又与等高,推出,可得结论【详解】解:(1)四边形是平行四边形,四边形是平行四边形,(2)如图:,又,又,【点睛】本题考查了相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型22、(1)见解析;(2)结论仍然成立.,DEDF,见解析;(3)仍然成立,DEDF,见解析【分析】(1)由题意根据全等三角形的性质与判

24、定,结合等边三角形性质证明BEDCFD(ASA),即可证得DEDF;(2)根据题意先取AC中点G,连接DG,继而再全等三角形的性质与判定,结合等边三角形性质证明EDGFDC(ASA),进而证得DEDF;(3)由题意过点D作DNAC于N,DMAB于M, 继而再全等三角形的性质与判定,结合等边三角形性质证明DMEDNF(ASA),即可证得DEDF【详解】解:(1)AB=AC,A=60,ABC是等边三角形,即B=C=60,D是BC的中点,BD=CD,EDF=120,DFAC,FDC=30,EDB=30,BEDCFD(ASA),DE=DF. (2)取AC中点G,连接DG,如下图, D为BC的中点,DG

25、=AC=BD=CD,BDG是等边三角形,GDE+EDB=60,EDF=120,FDC+EDB=60,EDG=FDC,EDGFDC(ASA),DE=DF,结论仍然成立. (3)如下图,过点D作DNAC于N,DMAB于M,DME=DNF=90,由(1)可知B=C=60,NDC=BDM=30,DM=DN,MDN=120,即NDF=MDE,DMEDNF(ASA),DE=DF,仍然成立.【点睛】本题是几何变换综合题,主要考查全等三角形的判断和性质以及等边三角形的性质,根据题意构造出全等三角形是解本题的关键23、 (1)见解析;(2) 见解析;(1) 存在,请确定C点的位置见解析,MN=1【分析】(1)根

26、据题意证明DCBACE即可得出结论;(2)由题中条件可得ACEDCB,进而得出ACMDCN,即CM=CN,MCN是等边三角形,即可得出结论;(1)可先假设其存在,设AC=x,MN=y,进而由平行线分线段成比例即可得出结论【详解】解:(1)ACD与BCE是等边三角形,AC=CD,CE=BC,ACE=BCD,在ACE与DCB中,ACEDCB(SAS),DB=AE;(2)ACEDCB,CAE=BDC,在ACM与DCN中,ACMDCN,CM=CN,又MCN=180-60-60=60,MCN是等边三角形,MNC=NCB=60即MNAB;(1)解:假设符合条件的点C存在,设AC=x,MN=y,MNAB,即

27、,当x=6时,ymax=1cm,即点C在点A右侧6cm处,且MN=1【点睛】本题主要考查了全等三角形的判定及性质以及平行线分线段成比例的性质和二次函数问题,能够将所学知识联系起来,从而熟练求解24、(1)见解析;(2)见解析;(3)【分析】(1)根据两角对应相等两三角形相似即可证明(2)证明BADDAF可得结论(3)求出AB,AF,代入AD2ABAF,即可解决问题【详解】(1)证明:DA平分BAC,CADDAE,DEAD,ADEC90,ACDADE(2)证明:连接DFEFBC,AFEC90,AEFB,ADEAFE90,A,E,D,F四点共圆,ADFAEF,BADF,DABDAF,BADDAF,AD2ABAF(3)设DG交EF于ODGBC,ACBC,DGAC,ADGDACDAG,AGGD,AED+EAD90,EDG+A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论