下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、编辑导语:运营与推荐,仿佛是一个不可分割的共同体,只有运营没有推荐,运营效果会大打折扣;只有推荐,没有运营,推荐自然也是无法开展。所以,运营达人们在掌握各种运营技巧的同时,也应该对于推荐有所了解。这样才能齐头并进,达到理想的目标。不想当厨师的采购员不是好运营,对于一个内容产品来说,运营的日常的工作中,特别是内容运营的同学会经常和推荐算法同学有很多工作上的配合。运营同学像是一个餐馆的采购员,负责食材的采买,而推荐同学就像是厨师,结合用户所点的菜单(偏好)采用对应的食材做成用户大概率会喜欢的菜肴。在这个链条里,运营同学在上游,如果引入的内容/创作者不够优质,就像采买的食材不够新鲜高质一样,推荐同学
2、无论怎么努力都很难做出可口的菜肴。同时还有另一个问题,即便运营同学采买了最好的食材,如果推荐同学做菜的方式有问题,后者没有最合理的使用食材,也没有最大限度发挥食材的价值,暴殄天物了。因此对于运营同学来说,不仅做好自己的上游工作,还非常有必要知道推荐的相关工作,这样当做出的菜肴不够好吃时,我们才能及时发现是食材的问题,还是做的方法有问题?更快的进行下一步的调整。对于运营同学来说,首先需要了解的是:内容是如何被推荐的?我们引入的创作者和他们的内容,是如何经过层层流程,决定是否被推荐,以及被给到多少流量的?内容在进入系统后整体的处理流程,不同产品和不通过公司的处理是不太一样的,但是整体逻辑上基本相同
3、,大模块的业务逻辑基本如下图。如上图所示,当用户上传一条内容后,内容会首先经过安全审核的流程,安全审核主要是将一些违规,黄色暴力血腥的内容剔除掉,未过审的视频基本就永久屏蔽或者直接删除。通过安全审核后,大部分内容社区会有原创审核,将一些重复上传或者搬运的内容过滤掉,原创审核大部分是依靠机器来审核的,未通过原创审核的就只会在用户自己的个人主页,或者粉丝的关注页等私域展示。通过了原创审核后的视频会再进入第一道质量审核,质量审核主要是把一些无意义、无主题、杂乱的内容过滤掉,通过了第一道质量审核后,内容将会被推荐系统纳入推荐候选池,然后会给作品最基础的流量推荐,目的是通过基础流量后产生的数据初步判断作
4、品质量的好坏。如果基础流量过后的数据反馈较好的话,就会接着加码给到更多的流量推荐,拿到更多流量推荐后,如果数据表现不好,也会被停止推荐;数据表现好的,会再进入第二道内容质量审核或者举报审核。第二道质量审核主要目的是防止前面的审核会有漏审,或者有一些不符合社区内容调性的内容出现。举报审核是指消费内容用户主动点击的举报,收到过多举报的内容一定是有潜在风险,需要人工再次审核。通过第二道质量审核,或者举报审核后,作品将会被持续给到更多流量,进入一个周期的推荐,成为内容平台重点推荐的候选内容。但是在整个持续推荐过程中,还会有一些更细的审核流程,比如高热审核,针对全平台最热门的视频进行审核,保证没有风险,
5、同时持续进行用户举报审核,及时发现潜在违规作品。持续推荐过程中,如果内容的数据反馈出现下滑,那么会慢慢的进行推荐冷却,直至停止推荐。以上所有流程中,被停止推荐的作品,在后续的 过程中,也会因为一些偶然的触发或者其它的召回被重新激活,给到更多流量进行推荐。常见的比如遇到节日,过往节日类的内容就会被重新召回推荐。了解了上面的推荐流程后,运营同学就能对整体内容的流转有一个清晰的认知,可以结合到自己的产品或者业务逻辑,细化整体的流程,这样当遇到问题的时候,就能及时的知道目前内容处在一个什么阶段。上述的推荐流程中,能帮助我们厘清内容流转的逻辑,但是在上图中的流量推荐模块,到底是如何进行推荐的,我们并不清
6、楚。为了搞清楚这个问题,我们得先对整体推荐系统有一个了解。如果把推荐系统简单拆开来看,推荐系统主要是由数据、算法、架构三个方面组成。常见的推荐系统如下图所示:在上图的推荐架构中,数据存储模块,主要是负责存储内容索引(一种对应到内容的逻辑标识,便于找到内容)、用户特征(包含用户的画像信息,兴趣点等)、用户日志(包含用户在客户端对内容产生的一些行为,比如:点击、点赞、分享、评论等)。推荐算法部分,会通过内容索引对内容进行召回,召回的候选内容一般都比较多,然后会经过一层过滤,将一些不适合推荐,或者其它运营、审核逻辑干涉的进行过滤,然后产生的推荐候选池会进行排序。排序通常分为粗排和精排两个步骤,排序的
7、方式是通过用户的特征,以及用户的行为日志,将内容排成用户最有可能细化的顺序。这样最终的排序后的内容就会推送到客户端,按照客户端实际的展现场景进行展示。内容展示后,用户对其产生的行为就会通过日志重新上报,然后实时进行日志的计算,用户画像更新和推荐指标更新,比如 ctr 等,实时计算完成后,再更新到数据存储中进行最后的存储。这样,后续的推荐取得数据都是最新的。上述的推荐系统结构图,让我们知道了推荐的上下游工作原理,也知道推荐系统的组成部分有哪些,在这些组成部分里,和运营日常工作中交集最多的部分,应该是推荐算法部分,推荐算法中最核心的两步就是:召回和排序。了解了这一块,基本也就大概明白了推荐算法的原
8、理,以及我们遇到一些推荐问题的时候,大概也能知道是哪一块出了问题。我们先来看下召回,什么是召回?召回就是指推荐系统通过某种策略从全量内容池中选取一部分出来,推荐系统召回的方式一般有很多种,比如常见的热门召回、协同过滤召回、兴趣标签召回等。单一的召回有自己的优点,但同时缺点也会很明显,因此为了有更完整、全面的召回,通常采用的是多路召回,如下图所示:如上图所示:如果我们根据召回是否有用户个性化因素存在来划分,可以分成两大类:一类是无个性化因素的召回,比如热门内容或者历史点击率高的内容的召回;另外一类是包含个性化因素的召回,比如用户兴趣标签召回、协同过滤召回。简单解释下这几个常见的召回策略:召回之后的排序,一般分成粗排和精排两个阶段:精排的方式有很多,最初级的是策略规则排序(对各路召回,指定权重和规则进行排序),后续有基于各种模型的排序,有LR (线性回归)、LR+GBDT (线性回归+树模型)、FM (因子分解模型)、 DNN (深度学习模型)等。各种模型的排序较为复杂,很多不具备可解释性,在这里不再赘述,感兴趣的读者可以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高速公路合同制收费员二零二五年度服务质量监督与反馈协议3篇
- 2025年度落水管安装与水质净化服务合同4篇
- 二零二五年度木屋建造与木材加工工艺改进合同4篇
- 咖啡馆品牌形象包装设计考核试卷
- 客运站服务创新实践考核试卷
- 2025版养老信托资金借款合同3篇
- 2025版电子商务合同争议解决程序与法律适用合同4篇
- 二零二五年度软件开发与经销合同2篇
- 2025版学校教师培训与发展聘用合同样本3篇
- 2025年外汇交易居间服务合同
- GB/T 16895.3-2024低压电气装置第5-54部分:电气设备的选择和安装接地配置和保护导体
- 计划合同部部长述职报告范文
- 窗帘采购投标方案(技术方案)
- 基于学习任务群的小学语文单元整体教学设计策略的探究
- 人教版高中物理必修一同步课时作业(全册)
- 食堂油锅起火演练方案及流程
- 《呼吸衰竭的治疗》
- 2024年度医患沟通课件
- 2024年中考政治总复习初中道德与法治知识点总结(重点标记版)
- 2024年手术室的应急预案
- 五年级上册小数除法竖式计算练习300题及答案
评论
0/150
提交评论