版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、*二、全微分在数值计算中的应用 应用 第三节一元函数 y = f (x) 的微分近似计算估计误差本节内容:一、全微分的定义 全微分一、全微分的定义 定义: 如果函数 z = f ( x, y )在定义域 D 的内点( x , y )可表示成其中 A , B 不依赖于 x , y , 仅与 x , y 有关,称为函数在点 (x, y) 的全微分, 记作若函数在域 D 内各点都可微,则称函数 f ( x, y ) 在点( x, y) 可微,处全增量则称此函数在D 内可微.(2) 偏导数连续下面两个定理给出了可微与偏导数的关系:(1) 函数可微函数 z = f (x, y) 在点 (x, y) 可微
2、由微分定义 :得函数在该点连续偏导数存在 函数可微 即定理1(必要条件)若函数 z = f (x, y) 在点(x, y) 可微 ,则该函数在该点偏导数同样可证证: 由全增量公式必存在,且有得到对 x 的偏增量因此有 反例: 函数易知 但因此,函数在点 (0,0) 不可微 .注意: 定理1 的逆定理不成立 .偏导数存在函数 不一定可微 !即:定理2 (充分条件)若函数的偏导数则函数在该点可微分.推广: 类似可讨论三元及三元以上函数的可微性问题.例如, 三元函数习惯上把自变量的增量用微分表示,的全微分为于是例1. 计算函数在点 (2,1) 处的全微分. 例2. 计算函数的全微分. 解: 内容小结1. 微分定义:2. 重要关系:函数可导函数可微偏导数连续函数连续思考与练习1. P130 题 1 (总习题八)函数在可微的充分条件是( )的某邻域内存在 ;时是无穷小量 ;时是无穷小量 .2. 选择题答案: 3. 已知在点 (0,0) 可微 .Ex:在点 (0,0) 连续且偏导数存在,续,证: 1)因故函数在点 (0, 0) 连续 ; 但偏导数在点 (0,0) 不连 证明函数所以同理极限不存在 ,在点(0,0)不连续 ;同理 ,在点(0,0)也不连续
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度农业科技园区设施租赁协议4篇
- 启迪未来点亮梦想
- 2025版收入证明模板制作与市场推广合作合同3篇
- 2025年全球及中国气体激光清洗设备行业头部企业市场占有率及排名调研报告
- 2025年全球及中国住宅用灌溉喷水阀行业头部企业市场占有率及排名调研报告
- 2025-2030全球宠物肝脏功能补充剂行业调研及趋势分析报告
- 2025-2030全球印章套件行业调研及趋势分析报告
- 2025-2030全球光伏发电箱变行业调研及趋势分析报告
- 施工承包合同标准模板
- 2025版个人购房贷款还款顺序合同模板3篇
- 小学六年级数学上册《简便计算》练习题(310题-附答案)
- 2023-2024学年度人教版一年级语文上册寒假作业
- 培训如何上好一堂课
- 高教版2023年中职教科书《语文》(基础模块)下册教案全册
- 2024医疗销售年度计划
- 税务局个人所得税综合所得汇算清缴
- 人教版语文1-6年级古诗词
- 上学期高二期末语文试卷(含答案)
- 软件运维考核指标
- 空气动力学仿真技术:格子玻尔兹曼方法(LBM)简介
- 比较思想政治教育学
评论
0/150
提交评论