下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、班海数学精批一本可精细批改的教辅2.1 有理数【教学目标】 知识与技能会用正、负数表示生活中常用的具有相反意义的量.2. 理解有理数的意义,会对有理数按照一定的标准进行分类. 过程与方法1.了解负数产生的背景是由于实际需要产生的.2. 培养学生分类讨论的数学思想及对立统一的辩证唯物主义的观点. 情感、态度与价值观体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣.2. 通过有理数的分类学习培养学生善于观察的习惯.【教学重难点】重点:会用正、负数表示生活中常用的具有相反意义的量并了解有理数包括哪些数。难点:1.能结合生活实际举出具有相反意义的量的典型例子. 2.明确有理数分类的标
2、准.分类的标准不同,分类的结果也不同,分类的结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类.【教学过程】一、引入新课师:同学们,我们已经学习了哪些数?它们是怎样产生和发展起来的?教师引导学生说出:在生活中为了表示物体的个数或事物的顺序,产生了数1,2,3,;为了表示“没有”,引入了数0;有时分配和测量的结果不是整数,需要用分数(小数)表示.总之,数是为了满足生产和生活的需要而产生并逐步发展起来的.二、讲授新课1.相反意义的量:师:同学们,在我们的日常生活中,常会遇到这样一些量(事情):例1:汽车向东行驶3千米和向西行驶2千米.例2:温度是零上10 和零下5 .例3:收入5
3、00元和支出237元.例4:水位升高1.2米和下降0.7米.例5:买进100辆自行车和卖出20辆自行车.(1)试着让学生考虑这些例子中出现的每一对量有什么共同特点.(具有相反意义.向东和向西、零上和零下、收入和支出、升高和下降、买进和卖出都具有相反意义.)(2)你能举出几对日常生活中的具有相反意义的量吗?2.正数和负数:师:同学们能用我们已学过的数表示这些具有相反意义的量吗?例如,零上5 用5来表示,零下5 呢?也能用5来表示吗?说明:在天气预报图中,零下5 是用-5 来表示的.一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正,用过去学过的数来表示;把与它意义相反的量规定为负,用
4、过去学过的数(零除外)前面放一个“-”(读作“负”)号来表示.以温度为例,通常规定零上为正,零下为负,零上10 就用10 表示,零下5 就用-5 来表示.师:怎样表示具有相反意义的量呢?你们能否从天气预报出现的标记中得到一些启发呢?在例1中,我们如果规定向东为正,那么向西则为负.汽车向东行驶3千米记作3千米,向西行驶2千米应记作-2千米.后面的例子让学生来说(注意词的表达).在以上的讨论中,出现了哪些新数?为了表示具有相反意义的量,我们引进了-2,-5,-237,-0.7等数.像这样的一些新数,叫做负数(negative number).过去学过的那些数(零除外),如3,10,500,1.2等
5、,叫做正数(positive number).正数前面有时也可放一个“+”(读作“正”),如5可以写成+5.注意:零既不是正数,也不是负数.3.数的扩充.师:我们都知道,数1,2,3,4,叫做正整数;-1,-2,-3,-4,叫做负整数;正整数、负整数和零统称为整数;数,8,+5.6,叫做正分数;-,-,-3.5,叫做负分数;正分数和负分数统称为分数;整数和分数统称为有理数.4.师:同学们,请你们认真思考并回答下列问题:(1)“0”是整数吗?是正数吗?是有理数吗?生:是整数且是有理数,但不是正数.(2)“-2”是整数吗?是正数吗?是有理数吗?生:是整数,也是有理数,但不是正数.(3)自然数就是整
6、数吗?是正数吗?是有理数吗?生:自然数是整数,也是有理数,但不一定是正数.要求学生区分“正”与“整”;知道小数可化为分数.5.有理数的分类.不同的分类标准可以将有理数进行不同的分类:(1)先将有理数按“整”和“分”的属性分,再按每类数的“正”、“负”分。(2)先将有理数按“正”和“负”的属性分,再按每类数的“整”“分”分。注:“0”也是自然数;“0”的特殊性.三、例题讲解【例1】 (1)一个月内,小明体重增加2 kg,小华体重减少1 kg,小强体重无变化,写出他们这个月的体重增加值;(2)某年,下列国家的商品进出口总额与上年相比,变化情况是:美国减少6.4%, 德国增长1.3%,法国减少2.4
7、%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.写出这些国家这一年商品进出口总额的增长率.【答案】 (1)这个月小明体重增加2 kg,小华体重增加-1 kg,小强体重增加0 kg;(2)六个国家这一年商品进出口总额的增长率是:美国 -6.4%,德国 1.3%,法国 -2.4%,英国 -3.5%,意大利 0.2%,中国 7.5%.【例2】 (1)某人转动转盘,如果用+5表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?(2)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02 g,那么-0.03 g表示什么?(3)某大米包装袋上标注着“净含量:10 kg150 g”,这里的“10 kg150 g”表示什么?【答案】 (1)沿顺时针方向转了12圈记作-12圈;(2)-0.03 g表示乒乓球的质量低于标准质量0.03 g;(3)每袋大米的标准质量应为10 kg,但实际每袋大米可能有150 g的误差,即最多超出标准质量150 g,最少少于标准质量150 g.四.课堂练习.教材第25页的“随堂练习”的第1、2题五、课堂小结正数和负数表示的是一对具有相反意义的量,哪种意义的量为正是可以任意规定的.如果把一种意义的量规定为正,则相反意义的量规定为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【2021届备考】2021届全国名校数学试题分类解析汇编(12月第三期):M单元-推理与证明
- 音乐教师培训总结5篇
- 【红对勾】2021-2022学年人教版高中政治必修一习题-第一单元-生活与消费-课时作业6
- 【每日一练】《晨读晚练》英语高三年级上学期第五周参考答案及解析5
- 【全程复习方略】2022届高考数学(文科人教A版)大一轮专项强化训练(五)圆锥曲线的综合问题-
- 2025年七年级统编版语文寒假预习 第01讲 孙权劝学
- 【全程复习方略】2020年高考化学单元评估检测(四)(鲁科版-福建专供)
- 浙江省温州苍南2023-2024学年第二学期期末检测卷 六年级下册科学
- 【全程复习方略】2022届高考数学(文科人教A版)大一轮课时作业:10.3-几何概型-
- 【全程复习方略】2022届高考数学(文科人教A版)大一轮课时作业:2.3-函数的奇偶性与周期性-
- JGJ276-2012 建筑施工起重吊装安全技术规范 非正式版
- QCT1067.4-2023汽车电线束和电器设备用连接器第4部分:设备连接器(插座)的型式和尺寸
- 2019电子保单业务规范
- 学堂乐歌 说课课件-2023-2024学年高中音乐人音版(2019) 必修 音乐鉴赏
- 幕墙工程材料组织、运输装卸和垂直运输方案
- 灌溉用水循环利用技术
- 泌尿科一科一品汇报课件
- 2024年江西省三校生高职英语高考试卷
- 中国古代文学智慧树知到期末考试答案章节答案2024年广州大学
- 重庆市南岸区2022-2023学年五年级上学期期末语文试卷
- 现浇钢筋混凝土整体式肋梁楼盖结构-课程设计
评论
0/150
提交评论