版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、非线性规划问题及其数学模型和计算举例12非线性规划问题举例: Example1:第82页例6-1 Example2:第82页例6-2非线性规划问题的数学模型非线性规划问题的图示31.1 非线性规划问题举例 Example1: 某商店经销A、B两种产品,售价分别为20和380元。据统计,售出一件A 产品的平均时间为小时,而售出一件B 产品的平均时间与其销售的数量成正比,表达式为。若该商店总的营业时间为1000小时,试确定使其营业额最大的营业计划。 41.1 非线性规划问题举例解 设x1和x2分别为商店经销A、B两种产品的件数,于是有如下数学模型: 51.1 非线性规划问题举例Example 2:
2、 在层次分析(Analytic Hierarchy Process, 简记为 AHP)中,为进行多属性的综合评价,需要确定每个属性的相对重要性,即它们的权重。为此,将各属性进行两两比较,从而得出如下判断矩阵: 61.1 非线性规划问题举例 a11 a1nJ= , an1 ann其中: aij是第i个属性与第j个属性的重要性之比。71.1 非线性规划问题举例 现需要从判断矩阵求出各属性的权重,为使求出的权重向量W在最小二乘意义上能最好地反映判断矩阵的估计,由aij=wi/wj可得:81.2 非线性规划问题的数学模型 s.t. 其中 是n维欧氏空间En中的向量点。91.2 非线性规划问题的数学模型
3、 由于, ,“”不等式仅乘“-1”即可转换为“”不等式;因此上述数学模型具有一般意义。又因为等价于两个不等式: ; ,因此非线性规划的数学模型也可以表示为:101.3 非线性规划问题的图示 若令其目标函数f (X)=c,目标函数成为一条曲线或一张曲面;通常称为等值线或等值面。此例,若设f (X)=2和f (X)=4可得两个圆形等值线,见下图:111.3 非线性规划问题的图示 由左图可见,等值线f (X)=2和约束条件直线6-6相切,切点D即为此问题的最优解,X*=(3, 3),其目标函数值 f (X*)=2。 3232066x1x2f(X)=4f(X)=2121.3 非线性规划问题的图示 在此
4、例中,约束 对最优解发生了影响,若以 代替原约束,则非线性规划的最优解是 ,即图中的C点,此时 。由于最优点位于可行域的内部,故事实上约束 并未发挥作用,问题相当一个无约束极值问题。131.3 非线性规划问题的图示 注 线性规划存在最优解,最优解只能在其可行域的边缘上(特别能在可行域的顶点上)得到;而非线性规划的最优解(如果存在)则可能在可行域的任意一点上得到。142. 极值问题局部极值与全局极值极值点存在的条件凸函数和凹函数凸函数的性质函数凸性的判定152.1 局部极值与全局极值线性规划 最优解 全局最优解非线性规划 局部最优解 未必全局最优16局部极值对于X-X* 均有不等式 f (X)
5、f (X*) ,则称 X*为 f (X)在 R上的局部极小点,f (X*)为局部极小值;对于X-X* f (X*) ,则称 X*为 f (X)在 R上的严格局部极小点, f (X*)为严格局部极小值;17全局极值对于X,X* R均有不等式 f (X) f (X*) ,则称 X*为 f (X)在 R上的全局极小点,f (X*)为全局极小值;对于X,X* R均有不等式f (X) f (X*) ,则称X*为f (X)在R上的严格全局极小点, f (X*)为严格全局极小值。182.2 极值点存在的条件必要条件 设R是En上的一个开集,f (X)在R上有一阶连续偏导数,且在点 取得局部极值,则必有 或1
6、9必要条件 为函数 f (X)在 X*点处的梯度。 由数学分析可知, 的方向为X*点处等值面(等值线)的法线方向,沿这一方向函数值增加最快,如图所示。20必要条件 满足 的点称为平稳点或驻点。极值点一定是驻点;但驻点不一定是极值点。 21充分条件充分条件 设R是En上的一个开集,f (X)在R上具有二阶连续偏导数,对于 ,若 且对任何非零向量有: 则X*为 f (X)的严格局部极小点。 称为 f (X)在点X*处的海赛(Hesse)矩阵。 22充分条件23充分条件(充分条件)等价于: 如果函数f (X)在X*点的梯度为零且海赛矩阵正定,则X*为函数f (X)的严格局部极小点。242.3 凸函数
7、和凹函数 设 f (X)为定义在En中某一凸集R上的函数,若对于任何实数(01)以及R中的任意两点X(1)和X(2) ,恒有: 则称 f (X)为定义在R上的凸函数;若上式为严格不等式,则称 f (X)为定义在R上的严格凸函数。改变不等号的方向,即可得到凹函数和严格凹函数的定义。 25凸函数和凹函数示意图X(1)X(2)f (X)X凸函数X(1)X(2)f (X)X凹函数26非凹非凸函数示意图f (X(2)f (X(1)X(1) +(1-)X(2)X(1)X(2)f (X)X非凸非凹函数272.4 凸函数的性质设f (X)为定义在凸集R上的凸函数,则对于任意实数0 ,函数 f (X)也是定义在
8、R上的凸函数。 设f1 (X)和f 2(X)为定义在凸集R上的两个凸函数,则其和f (X) = f1 (X) + f 2(X)仍然是定义在R上的凸函数。 设f (X)为定义在凸集R上的凸函数,则对于任意实数,集合S =X|XR, f (X) 是凸集。282.4 凸函数的性质设f (X)为定义在凸集R上的凸函数,则它的任一极小点就是它在R上的最小点(全局极小点);而且它的极小点形成一个凸集。设f (X)为定义在凸集R上的可微凸函数,若它存在点X*R,使得对于所有的XR有 f (X *)T (X- X*) 0,则X*是f (X)在R上的最小点(全局极小点)。 292.5 函数凸性的判定根据凸函数的
9、定义进行判定; 根据一阶条件进行判定;根据二阶条件进行判定;30一阶条件 设R为En上的开凸集, f (X)在R上具有一阶连续偏导数,则f (X)为R上的凸函数的充分必要条件是,对于属于R的任意两个不同点X(1)和X(2)恒有: 31二阶条件 设R为En上的开凸集, f (X)在R上具有二阶连续偏导数,则 f (X)为R上的凸函数的充分必要条件是: f (X)的海赛矩阵H(X)在R上处处半正定( ZTH(X)Z0 )。323. 凸规划凸规划的定义下降迭代算法333.1 凸规划的定义 考虑非线性规划: 假定其中 f (X)为凸函数, g j (X)为凹函数(- g j (X)为凸函数),这样的非
10、线性规划称为凸规划。343.1 凸规划的定义 凸规划: 可行域是凸集、局部最优即为全局最优;若为严格凸函数,最优解若存在必唯一。353.2 下降迭代算法基本思想: 给定一个初始估计解X(0),然后按某种规则(即算法)找出一个比X(0)更好的解X(1) ,如此递推即可得到一个解的序列X(k) ,若这一解的序列有极限X* ,即 则称X*为最优解。363.2 下降迭代算法基本问题: 递推步骤的有限性,一般说很难得到精确解,当满足所要求的精度时即可停止迭代而得到一个近似解。373.2 下降迭代算法下降算法: 若产生的解序列X(k) 能使目标函数f (X(k)逐步减少,就称此算法为下降算法。“下降”的要
11、求很容易满足,因此它包括了很多具体的算法。383.2 下降迭代算法若从 X (k)出发沿任何方向移动都不能使目标函数值下降,则 X (k)是一个局部极小点;若从 X (k)出发至少存在一个方向能使目标函数下降,则可选定某一下降方向 P (k) ,沿这一方向前进一步,得到下一个点 X (k+1) 。沿P (k)方向前进一步相当于在射线 上选定新的点 ,其中P (k)为搜索方向, 为步长。393.2 下降迭代算法确定搜索方向P (k)是关键的一步,各种算法的区别主要在于确定搜索方向P (k)的方法不同。步长 的选定一般都是以使目标函数在搜索方向上下降最多为依据的,称为最佳步长,即沿射线 求目标函数
12、的极小值由于确定步长是通过求以 为变量的一元函数 的极小点来实现的,故称这一过程为一维搜索。404. 一维搜索 一维搜索即沿某一已知方向求目标函数的极小点,一维搜索的方法很多,在此只介绍斐波那契法和黄金分割法。414.1 斐波那契法 一维搜索过程是建立在一个被称为斐波那契数序列基础上的。斐波那契数序列是具有如下递推关系的无穷序列:F0=F1=1Fn=Fn-1+Fn-2,n =2,3, n012345678Fn112358132134424.1 斐波那契法斐波那契法成功地实现了单峰函数极值范围的缩减。设某一单峰函数在a, b上有一极小点 x*,在此区间内任意取两点a1和b1 ,使a1b1 ,计算
13、其函数值可能出现以下两种情况: (1) f (a1) f (b1),如图(1)所示;此时极小点x*必在期间a, b1内。 (2) f (a1) f (b1),如图(2)所示;此时极小点x*必在期间a1, b内。 434.1 斐波那契法f (x)o a a1 x* b1 b x图(1)444.1 斐波那契法f (x)o a a1 x* b1 b x图(2)454.1 斐波那契法只要在区间a, b内任意取两点a1和b1 ,使a1b1并计算其函数值加以比较,就可以把搜索区间a, b缩减成a, b1或a1, b。若要继续缩小搜索期间a, b1或a1, b ,只需在期间内再取一点算出其函数值并与f (a
14、1)或 f (b1)加以比较即可。由此可见,计算函数的次数越多,搜索期间就缩得越小,即区间的缩短率(缩短后的区间长度与原区间长度之比)与函数的计算次数有关。46斐波那契法的具体步骤1. 根据相对精度或绝对精度,确定试点个数;2. 确定两个试点的位置a1、b1(对称搜索);Fn-2Fn-1aba1b1Fn-2Fn-147斐波那契法的具体步骤3. 计算函数值和并比较其大小,从而缩减搜索区间;4. 重复2、3两步,直到得到近似最小点。48斐波那契法例(第90页例6-6)例6-6: 用斐波那契法求函数 f (x)=3x2-12x+10的近似极小点和极小值,要求缩短后的区间不大于初始区间1,4的倍。494.2 黄金分割法 用斐波那契法以n个点缩减某一区间时,区间长度的缩减率依次为:Fn-1/Fn, Fn-2/Fn-1 , F1/F2 。现将以上数列分为奇数项F2k-2/F2k和偶数项F2k/F2k+1 ,可以证明这两个数列收敛于同一个极限。504.2 黄金分割法以不变的区间缩减率,代替斐波那契法每次不同的缩减率,就得到了黄金分割法。黄金分割法是一种等速对称的搜索方法,每次试点均取在区间长度的倍和倍处。51黄金分割法例(第92页例6-7)例6-7:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生猪屠宰质量管理规范检查项目表
- 微生物检验教案
- 乡村教育与支援计划
- 美容师的劳动合同三篇
- 基于数据的业务决策计划
- 班级文化活动的多样化发展计划
- 私人订制服装合同三篇
- 2025中考数学考点题型归纳(选择题-压轴)
- 河北省部分学校2024-2025学年高三上学期11月阶段调研检测二 地理 含答案
- 麻醉科主治医师考试模拟题(301~350)
- 重大事故隐患数据表
- 渠道管理就这样做
- 水电站大坝安全管理实绩评价规程
- 07项目部事故隐患排查清单
- ZZ036 新能源汽车维修赛题-2023年全国职业院校技能大赛拟设赛项赛题(10套)
- 人教版五年级上册简易方程《用字母表示数例4》
- ZZ031 园林微景观设计与制作赛项赛题-2023年全国职业院校技能大赛拟设赛项赛题完整版(10套)
- 体育看齐教案
- 学生突出心理问题防治工作实施方案
- 医院各部门科室岗位职责
- 花样跳绳臂交叉跳绳 教学设计
评论
0/150
提交评论