2022届江苏省张家港市中考联考数学试卷含解析_第1页
2022届江苏省张家港市中考联考数学试卷含解析_第2页
2022届江苏省张家港市中考联考数学试卷含解析_第3页
2022届江苏省张家港市中考联考数学试卷含解析_第4页
2022届江苏省张家港市中考联考数学试卷含解析_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1计算 的结果是( )Aa2B-a2Ca4D-a42不等式42x0的解集在数轴上表示为( )ABCD3比较4,的大小,正确的是()A4B4C4D44在一次数学答题比赛中,五

2、位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A众数是5B中位数是5C平均数是6D方差是3.65如图,在平面直角坐标系中,把ABC绕原点O旋转180得到CDA,点A,B,C的坐标分别为(5,2),(2,2),(5,2),则点D的坐标为()A(2,2)B(2,2)C(2,5)D(2,5)6下列四个图形中,既是轴对称图形又是中心对称图形的是()ABCD7计算的结果是()A1B1C1xD8一元二次方程mx2+mx0有两个相等实数根,则m的值为()A0B0或2C2D29要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4

3、场比赛.设比赛组织者应邀请个队参赛,则满足的关系式为()ABCD10下列计算正确的是()A(a)aBa+aaC(3a)(2a)6aD3aa3二、填空题(本大题共6个小题,每小题3分,共18分)11如图所示,在长为10m、宽为8m的长方形空地上,沿平行于各边的方向分割出三个全等的小长方形花圃则其中一个小长方形花圃的周长是_m.12如图,已知正方形ABCD中,MAN=45,连接BD与AM,AN分别交于E,F点,则下列结论正确的有_MN=BM+DNCMN的周长等于正方形ABCD的边长的两倍;EF1=BE1+DF1;点A到MN的距离等于正方形的边长AEN、AFM都为等腰直角三角形SAMN=1SAEFS

4、正方形ABCD:SAMN=1AB:MN设AB=a,MN=b,则1113函数y的自变量x的取值范围为_14如图,六边形ABCDEF的六个内角都相等若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于_15江苏省的面积约为101 600km1,这个数据用科学记数法可表示为_km116如图,已知AEBD,1=130,2=28,则C的度数为_三、解答题(共8题,共72分)17(8分)如图1,经过原点O的抛物线y=ax2+bx(a0)与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t)(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角

5、形的面积为2,求点C的坐标;(3)如图2,若点M在这条抛物线上,且MBO=ABO,在(2)的条件下,是否存在点P,使得POCMOB?若存在,求出点P的坐标;若不存在,请说明理由18(8分)已知抛物线y=ax2+bx+c()若抛物线的顶点为A(2,4),抛物线经过点B(4,0)求该抛物线的解析式;连接AB,把AB所在直线沿y轴向上平移,使它经过原点O,得到直线l,点P是直线l上一动点设以点A,B,O,P为顶点的四边形的面积为S,点P的横坐标为x,当4+6S6+8时,求x的取值范围;()若a0,c1,当x=c时,y=0,当0 xc时,y0,试比较ac与l的大小,并说明理由19(8分)规定:不相交的

6、两个函数图象在竖直方向上的最短距离为这两个函数的“亲近距离”(1)求抛物线yx22x+3与x轴的“亲近距离”;(2)在探究问题:求抛物线yx22x+3与直线yx1的“亲近距离”的过程中,有人提出:过抛物线的顶点向x轴作垂线与直线相交,则该问题的“亲近距离”一定是抛物线顶点与交点之间的距离,你同意他的看法吗?请说明理由(3)若抛物线yx22x+3与抛物线y+c的“亲近距离”为,求c的值20(8分)第二十四届冬季奧林匹克运动会将于2022年2月4日至2月20日在北京举行,北京将成为历史上第一座既举办过夏奥会又举办过冬奥会的城市.某区举办了一次冬奥知识网上答题竞赛,甲、乙两校各有名学生参加活动,为了

7、解这两所学校的成绩情况,进行了抽样调查,过程如下,请补充完整. 收集数据从甲、乙两校各随机抽取名学生,在这次竞赛中他们的成绩如下:甲:乙:整理、描述数据按如下分数段整理、描述这两组样本数据:学校人数成绩甲乙 (说明:优秀成绩为,良好成绩为合格成绩为.)分析数据两组样本数据的平均分、中位数、众数如下表所示:学校平均分中位数众数甲乙其中 .得出结论(1)小明同学说:“这次竞赛我得了分,在我们学校排名属中游略偏上!”由表中数据可知小明是 _校的学生;(填“甲”或“乙”)(2)张老师从乙校随机抽取-名学生的竞赛成绩,试估计这名学生的竞赛成绩为优秀的概率为_ ;(3)根据以上数据推断一所你认为竞赛成绩较

8、好的学校,并说明理由: ;(至少从两个不同的角度说明推断的合理性)21(8分)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1x90)天的售价与销售量的相关信息如下表:时间x(天)1x5050 x90售价(元/件)x4090每天销量(件)2002x已知该商品的进价为每件30元,设销售该商品的每天利润为y元求出y与x的函数关系式;问销售该商品第几天时,当天销售利润最大,最大利润是多少?该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.22(10分)桌面上放有4张卡片,正面分别标有数字1,2,3,4,这些卡片除数字外完全相同把这些卡片反面朝上洗匀后放在桌面上,

9、甲从中任意抽出一张,记下卡片上的数字后仍放反面朝上放回洗匀,乙从中任意抽出一张,记下卡片上的数字,然后将这两数相加(1)请用列表或画树状图的方法求两数和为5的概率;(2)若甲与乙按上述方式做游戏,当两数之和为5时,甲胜;反之则乙胜;若甲胜一次得12分,那么乙胜一次得多少分,才能使这个游戏对双方公平?23(12分)如图,O的直径AD长为6,AB是弦,CDAB,A=30,且CD=(1)求C的度数;(2)求证:BC是O的切线24已知:如图,在平面直角坐标系xOy中,抛物线的图像与x轴交于点A(3,0),与y轴交于点B,顶点C在直线上,将抛物线沿射线 AC的方向平移,当顶点C恰好落在y轴上的点D处时,

10、点B落在点E处(1)求这个抛物线的解析式;(2)求平移过程中线段BC所扫过的面积;(3)已知点F在x轴上,点G在坐标平面内,且以点 C、E、F、G 为顶点的四边形是矩形,求点F的坐标 参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】直接利用同底数幂的乘法运算法则计算得出答案【详解】解:,故选D【点睛】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键2、D【解析】根据解一元一次不等式基本步骤:移项、系数化为1可得【详解】移项,得:-2x-4,系数化为1,得:x2,故选D【点睛】考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边

11、都乘以或除以同一个负数不等号方向要改变3、C【解析】根据4=且4=进行比较【详解】解:易得:4=且4=,所以4故选C.【点睛】本题主要考查开平方开立方运算。4、D【解析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可【详解】A、数据中5出现2次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)5=6,此选项正确;D、方差为(76)2+(56)22+(36)2+(106)2=5.6,此选项错误;故选:D【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算

12、公式,此题难度不大5、A【解析】分析:依据四边形ABCD是平行四边形,即可得到BD经过点O,依据B的坐标为(2,2),即可得出D的坐标为(2,2)详解:点A,C的坐标分别为(5,2),(5,2),点O是AC的中点,AB=CD,AD=BC,四边形ABCD是平行四边形,BD经过点O,B的坐标为(2,2),D的坐标为(2,2),故选A点睛:本题主要考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标6、D【解析】根据轴对称图形与中心对称图形的概念求解【详解】A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题

13、意;C、不是轴对称图形,不是中心对称图形,故此选项不合题意;D、是轴对称图形,是中心对称图形,故此选项符合题意;故选D【点睛】此题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合7、B【解析】根据同分母分式的加减运算法则计算可得【详解】解:原式=-1,故选B【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握同分母分式的加减运算法则8、C【解析】由方程有两个相等的实数根,得到根的判别式等于0,求出m的值,经检验即可得到满足题意m的值【详解】一元二次方程mx1+mx0有两个相等实数根,m14m(

14、)m1+1m0,解得:m0或m1,经检验m0不合题意,则m1故选C【点睛】此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根9、A【解析】根据应用题的题目条件建立方程即可.【详解】解:由题可得:即:故答案是:A.【点睛】本题主要考察一元二次方程的应用题,正确理解题意是解题的关键.10、A【解析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解【详解】A(a2)3=a23=a6,故本选项正确;Ba2+a2=2a2,故本选项错误;C(3a

15、)(2a)2=(3a)(4a2)=12a1+2=12a3,故本选项错误;D3aa=2a,故本选项错误故选A【点睛】本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方和单项式乘法,理清指数的变化是解题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、12【解析】由图形可看出:小矩形的2个长+一个宽=10m,小矩形的2个宽+一个长=8m,设出长和宽,列出方程组解之即可求得答案【详解】解:设小长方形花圃的长为xm,宽为ym,由题意得,解得,所以其中一个小长方形花圃的周长是.【点睛】此题主要考查了二元一次方程组的应用,解题的关键是:数形结合,弄懂题意,找出等量关系,列出方程组本题也

16、可以让列出的两个方程相加,得3(x+y)=18,于是x+y=6,所以周长即为2(x+y)=12,问题得解.这种思路用了整体的数学思想,显得较为简捷.12、【解析】将ABM绕点A逆时针旋转,使AB与AD重合,得到ADH证明MANHAN,得到MN=NH,根据三角形周长公式计算判断;判断出BM=DN时,MN最小,即可判断出;根据全等三角形的性质判断;将ADF绕点A顺时针性质90得到ABH,连接HE证明EAHEAF,得到HBE=90,根据勾股定理计算判断;根据等腰直角三角形的判定定理判断;根据等腰直角三角形的性质、三角形的面积公式计算,判断,根据点A到MN的距离等于正方形ABCD的边长、三角形的面积公

17、式计算,判断【详解】将ABM绕点A逆时针旋转,使AB与AD重合,得到ADH则DAH=BAM,四边形ABCD是正方形,BAD=90,MAN=45,BAN+DAN=45,NAH=45,在MAN和HAN中,MANHAN,MN=NH=BM+DN,正确;BM+DN1,(当且仅当BM=DN时,取等号)BM=DN时,MN最小,BM=b,DH=BM=b,DH=DN,ADHN,DAH=HAN=11.5,在DA上取一点G,使DG=DH=b,DGH=45,HG=DH=b,DGH=45,DAH=11.5,AHG=HAD,AG=HG=b,AB=AD=AG+DG=b+b=b=a,当点M和点B重合时,点N和点C重合,此时,

18、MN最大=AB,即:,1,错误;MN=NH=BM+DNCMN的周长=CM+CN+MN=CM+BM+CN+DN=CB+CD,CMN的周长等于正方形ABCD的边长的两倍,结论正确;MANHAN,点A到MN的距离等于正方形ABCD的边长AD,结论正确; 如图1,将ADF绕点A顺时针性质90得到ABH,连接HEDAF+BAE=90-EAF=45,DAF=BAE,EAH=EAF=45,EA=EA,AH=AD,EAHEAF,EF=HE,ABH=ADF=45=ABD,HBE=90,在RtBHE中,HE1=BH1+BE1,BH=DF,EF=HE,EF1=BE1+DF1,结论正确;四边形ABCD是正方形,ADC

19、=90,BDC=ADB=45,MAN=45,EAN=EDN,A、E、N、D四点共圆,ADN+AEN=180,AEN=90AEN是等腰直角三角形,同理AFM是等腰直角三角形;结论正确;AEN是等腰直角三角形,同理AFM是等腰直角三角形,AM=AF,AN=AE,如图3,过点M作MPAN于P,在RtAPM中,MAN=45,MP=AMsin45,SAMN=ANMP=AMANsin45,SAEF=AEAFsin45,SAMN:SAEF=1,SAMN=1SAEF,正确;点A到MN的距离等于正方形ABCD的边长,S正方形ABCD:SAMN=1AB:MN,结论正确即:正确的有,故答案为【点睛】此题是四边形综合

20、题,主要考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,解本题的关键是构造全等三角形13、x1【解析】试题分析:由题意得,x+10,解得x1故答案为x1考点:函数自变量的取值范围14、2【解析】凸六边形ABCDEF,并不是一规则的六边形,但六个角都是110,所以通过适当的向外作延长线,可得到等边三角形,进而求解【详解】解:如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P六边形ABCDEF的六个角都是110,六边形ABCDEF的每一个外角的度数都是60AHF、BGC、DPE、GHP都是等边三角形GC=BC=3,DP=DE=1GH=GP=GC+CD

21、+DP=3+3+1=8,FA=HA=GH-AB-BG=8-1-3=4,EF=PH-HF-EP=8-4-1=1六边形的周长为1+3+3+1+4+1=2故答案为2【点睛】本题考查了等边三角形的性质及判定定理;解题中巧妙地构造了等边三角形,从而求得周长是非常完美的解题方法,注意学习并掌握15、1.016105【解析】科学记数法就是将一个数字表示成(a10的n次幂的形式),其中1|a|10,n表示整数n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂,【详解】解:101 600=1.016105故答案为:1.016105【点睛】本题考查科学计数法,掌握概念正确表示是本

22、题的解题关键.16、22【解析】由AEBD,根据平行线的性质求得CBD的度数,再由对顶角相等求得CDB的度数,继而利用三角形的内角和等于180求得C的度数【详解】解:AEBD,1=130,2=28,CBD=1=130,CDB=2=28,C=180CBDCDB=18013028=22故答案为22【点睛】本题考查了平行线的性质,对顶角相等及三角形内角和定理熟练运用相关知识是解决问题的关键三、解答题(共8题,共72分)17、(1)y=2x23x;(2)C(1,1);(3)(,)或(,)【解析】(1)由直线解析式可求得B点坐标,由A、B坐标,利用待定系数法可求得抛物线的表达式;(2)过C作CDy轴,交

23、x轴于点E,交OB于点D,过B作BFCD于点F,可设出C点坐标,利用C点坐标可表示出CD的长,从而可表示出BOC的面积,由条件可得到关于C点坐标的方程,可求得C点坐标;(3)设MB交y轴于点N,则可证得ABONBO,可求得N点坐标,可求得直线BN的解析式,联立直线BM与抛物线解析式可求得M点坐标,过M作MGy轴于点G,由B、C的坐标可求得OB和OC的长,由相似三角形的性质可求得的值,当点P在第一象限内时,过P作PHx轴于点H,由条件可证得MOGPOH,由的值,可求得PH和OH,可求得P点坐标;当P点在第三象限时,同理可求得P点坐标【详解】(1)B(2,t)在直线y=x上,t=2,B(2,2),

24、把A、B两点坐标代入抛物线解析式可得:,解得:,抛物线解析式为;(2)如图1,过C作CDy轴,交x轴于点E,交OB于点D,过B作BFCD于点F,点C是抛物线上第四象限的点,可设C(t,2t23t),则E(t,0),D(t,t),OE=t,BF=2t,CD=t(2t23t)=2t2+4t,SOBC=SCDO+SCDB=CDOE+CDBF=(2t2+4t)(t+2t)=2t2+4t,OBC的面积为2,2t2+4t=2,解得t1=t2=1,C(1,1);(3)存在设MB交y轴于点N,如图2,B(2,2),AOB=NOB=45,在AOB和NOB中,AOB=NOB,OB=OB,ABO=NBO,AOBNO

25、B(ASA),ON=OA=,N(0,),可设直线BN解析式为y=kx+,把B点坐标代入可得2=2k+,解得k=,直线BN的解析式为,联立直线BN和抛物线解析式可得:,解得:或,M(,),C(1,1),COA=AOB=45,且B(2,2),OB=,OC=,POCMOB,POC=BOM,当点P在第一象限时,如图3,过M作MGy轴于点G,过P作PHx轴于点H,如图3COA=BOG=45,MOG=POH,且PHO=MGO,MOGPOH,M(,),MG=,OG=,PH=MG=,OH=OG=,P(,);当点P在第三象限时,如图4,过M作MGy轴于点G,过P作PHy轴于点H,同理可求得PH=MG=,OH=O

26、G=,P(,);综上可知:存在满足条件的点P,其坐标为(,)或(,)【点睛】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、全等三角形的判定和性质、相似三角形的判定和性质、方程思想及分类讨论思想等知识在(1)中注意待定系数法的应用,在(2)中用C点坐标表示出BOC的面积是解题的关键,在(3)中确定出点P的位置,构造相似三角形是解题的关键,注意分两种情况18、()y=x2+3x当3+6S6+2时,x的取值范围为是x或x()ac1【解析】(I)由抛物线的顶点为A(-2,-3),可设抛物线的解析式为y=a(x+2)2-3,代入点B的坐标即可求出a值,此问得解,根据点A、B的坐

27、标利用待定系数法可求出直线AB的解析式,进而可求出直线l的解析式,分点P在第二象限及点P在第四象限两种情况考虑:当点P在第二象限时,x0,通过分割图形求面积法结合3+6S6+2,即可求出x的取值范围,当点P在第四象限时,x0,通过分割图形求面积法结合3+6S6+2,即可求出x的取值范围,综上即可得出结论,(2)由当x=c时y=0,可得出b=-ac-1,由当0 xc时y0,可得出抛物线的对称轴x=c,进而可得出b-2ac,结合b=-ac-1即可得出ac1【详解】(I)设抛物线的解析式为y=a(x+2)23,抛物线经过点B(3,0),0=a(3+2)23,解得:a=1,该抛物线的解析式为y=(x+

28、2)23=x2+3x设直线AB的解析式为y=kx+m(k0),将A(2,3)、B(3,0)代入y=kx+m,得:,解得:,直线AB的解析式为y=2x2直线l与AB平行,且过原点,直线l的解析式为y=2x当点P在第二象限时,x0,如图所示SPOB=3(2x)=3x,SAOB=33=2,S=SPOB+SAOB=3x+2(x0)3+6S6+2,即,解得:x,x的取值范围是x当点P在第四象限时,x0,过点A作AEx轴,垂足为点E,过点P作PFx轴,垂足为点F,则S四边形AEOP=S梯形AEFPSOFP=(x+2)x(2x)=3x+3SABE=23=3,S=S四边形AEOP+SABE=3x+2(x0)3

29、+6S6+2,即,解得:x,x的取值范围为x综上所述:当3+6S6+2时,x的取值范围为是x或x(II)ac1,理由如下:当x=c时,y=0,ac2+bc+c=0,c1,ac+b+1=0,b=ac1由x=c时,y=0,可知抛物线与x轴的一个交点为(c,0)把x=0代入y=ax2+bx+c,得y=c,抛物线与y轴的交点为(0,c)a0,抛物线开口向上当0 xc时,y0,抛物线的对称轴x=c,b2acb=ac1,ac12ac,ac1【点睛】本题主要考查了待定系数法求二次(一次)函数解析式、三角形的面积、梯形的面积、解一元一次不等式组、二次函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1

30、)巧设顶点式,代入点B的坐标求出a值,分点P在第二象限及点P在第四象限两种情况找出x的取值范围,(2)根据二次函数图象上点的坐标特征结合二次函数的性质,找出b=-ac-1及b-2ac19、(1)2;(2)不同意他的看法,理由详见解析;(3)c1【解析】(1)把y=x22x+3配成顶点式得到抛物线上的点到x轴的最短距离,然后根据题意解决问题;(2)如图,P点为抛物线y=x22x+3任意一点,作PQy轴交直线y=x1于Q,设P(t,t22t+3),则Q(t,t1),则PQ=t22t+3(t1),然后利用二次函数的性质得到抛物线y=x22x+3与直线y=x1的“亲近距离”,然后对他的看法进行判断;(

31、3)M点为抛物线y=x22x+3任意一点,作MNy轴交抛物线于N,设M(t,t22t+3),则N(t,t2+c),与(2)方法一样得到MN的最小值为c,从而得到抛物线y=x22x+3与抛物线的“亲近距离”,所以,然后解方程即可【详解】(1)y=x22x+3=(x1)2+2,抛物线上的点到x轴的最短距离为2,抛物线y=x22x+3与x轴的“亲近距离”为:2;(2)不同意他的看法理由如下:如图,P点为抛物线y=x22x+3任意一点,作PQy轴交直线y=x1于Q,设P(t,t22t+3),则Q(t,t1),PQ=t22t+3(t1)=t23t+4=(t)2+,当t=时,PQ有最小值,最小值为,抛物线

32、y=x22x+3与直线y=x1的“亲近距离”为,而过抛物线的顶点向x轴作垂线与直线相交,抛物线顶点与交点之间的距离为2,不同意他的看法;(3)M点为抛物线y=x22x+3任意一点,作MNy轴交抛物线于N,设M(t,t22t+3),则N(t,t2+c),MN=t22t+3(t2+c)=t22t+3c=(t)2+c,当t=时,MN有最小值,最小值为c,抛物线y=x22x+3与抛物线的“亲近距离”为c,c=1【点睛】本题是二次函数的综合题,考查了二次函数图象上点的坐标特征和二次函数的性质,正确理解新定义是解题的关键20、80;(1)甲;(2);(3)乙学校竞赛成绩较好,理由见解析【解析】首先根据乙校

33、的成绩结合众数的定义即可得出a的值;(1)根据两个学校成绩的中位数进一步判断即可;(2)根据概率的定义,结合乙校优秀成绩的概率进一步求解即可;(3)根据题意,从平均数以及中位数两方面加以比较分析即可.【详解】由乙校成绩可知,其中80出现的次数最多,故80为该组数据的众数,a=80,故答案为:80;(1)由表格可知,甲校成绩的中位数为60,乙校成绩的中位数为75,小明这次竞赛得了分,在他们学校排名属中游略偏上,小明为甲校学生,故答案为:甲;(2)乙校随便抽取一名学生的成绩,该学生成绩为优秀的概率为:,故答案为:;(3)乙校竞赛成绩较好,理由如下:因为乙校的平均分高于甲校的平均分说明平均水平高,乙

34、校的中位数75高于甲校的中位数65,说明乙校分数不低于70分的学生比甲校多,综上所述,乙校竞赛成绩较好.【点睛】本题主要考查了众数、中位数、平均数的定义与简单概率的计算的综合运用,熟练掌握相关概念是解题关键.21、(1);(2)第45天时,当天销售利润最大,最大利润是6050元;(3)41.【解析】(1)根据单价乘以数量,可得利润,可得答案.(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案.(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案【详解】(1)当1x50时,当50 x90时,综上所述:.(2)当1x50时

35、,二次函数开口下,二次函数对称轴为x=45,当x=45时,y最大=-2452+18045+2000=6050,当50 x90时,y随x的增大而减小,当x=50时,y最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元.(3)解,结合函数自变量取值范围解得,解,结合函数自变量取值范围解得所以当20 x60时,即共41天,每天销售利润不低于4800元【点睛】本题主要考查了1.二次函数和一次函数的应用(销售问题);2.由实际问题列函数关系式;3. 二次函数和一次函数的性质;4.分类思想的应用22、(1)详见解析;(2)4分.【解析】(1)根据题意用列表法求出答案;(2)算出甲乙获胜的概率,从而求出乙胜一次的得分.【详解】(1)列表如下:由列表可得:P(数字之和为5),(2)因为P(甲胜),P(乙胜),甲胜一次得12分,要使这个游戏对双方公平,乙胜一次得分应为:1234分.【点睛】本题考查概率问题中的公平性问题,解决本题的关键是计算出各种情况的概率,然后比较即可.23、(1)60;(2)见解析【解析】(1)连接B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论