§王桂琪实际应用导学案_第1页
§王桂琪实际应用导学案_第2页
§王桂琪实际应用导学案_第3页
§王桂琪实际应用导学案_第4页
§王桂琪实际应用导学案_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、从化市第二中学 高一年级数学导学案 必修5班级: 姓名 学号 使用时间: 年 月 日 1.2.1应用举例测量距离 学习目标 能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题 学习过程 一、课前准备复习1:在ABC中,C60,ab,c2,则A为 . 复习2:在ABC中,sinA,判断三角形的形状.二、新课导学 典型例题例1.(必修5 P) 如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是40m,BAC=,ACB=. 求A、B两点的距离. 分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题题目

2、条件告诉了边AB的对角,AC为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC的对角,应用正弦定理算出AB边. 例2. .(必修5 P)如图,A、B两点都在河的对岸(不可到达),设计一种测量A、B两点间距离的方法. 分析:这是例1的变式题,研究的是两个 的点之间的距离测量问题. . 练:两灯塔A、B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东30,灯塔B在观察站C南偏东60,则A、B之间的距离为多少? 当堂检测(时量:5分钟 满分:10分)计分:1. 台风中心从A地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B在A的正东40千米处,

3、B城市处于危险区内的时间为( ).A0.5小时 B1小时C1.5小时 D2小时2. 在中,已知,则的形状( ).A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.等腰三角形或直角三角形3.在中,已知,则的值是 4. 一船以每小时15km的速度向东航行,船在A处看到一个灯塔B在北偏东,行驶h后,船到达C处,看到这个灯塔在北偏东,这时船与灯塔的距离为 km 课后作业 隔河可以看到两个目标,但不能到达,在岸边选取相距km的C、D两点,并测得ACB75,BCD45,ADC30,ADB45,A、B、C、D在同一个平面,求两目标A、B间的距离.2. 某船在海面A处测得灯塔C与A相距海里,且在北偏东方

4、向;测得灯塔B与A相距海里,且在北偏西方向. 船由向正北方向航行到D处,测得灯塔B在南偏西方向. 这时灯塔C与D相距多少海里? 1.2.2应用举例测量高度 学习目标 能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题学习过程 一、课前准备请写出正弦定理和余弦定理的内容,并指出应用正弦定理和余弦定理能解决哪些问题.二、新课导学 学习探究新知:坡度、仰角、俯角、方位角坡度沿斜坡向上的方向与水平方向的夹角;仰角与俯角视线与水平线的夹角。当视线在水平线之上时,称为仰角;当视线在水平线之下时,称为俯角;方位角从正北方向顺时针转到目标方向线的水平转角。探究:AB是一个不可到达的建筑物,B

5、为底部,A为建筑物的最高点,设计一种测量建筑物高度AB的方法. 分析:选择基线HG,使H、G、B三点共线,要求AB,先求AE在中,可测得角 ,关键求AC在中,可测得角 ,线段 ,又有故可求得AC 典型例题例1. 如图,在山顶铁塔上B处测得地面上一点A的俯角=,在塔底C处测得A处的俯角=已知铁塔BC部分的高为m,求出山高CD.例2. 在地面上点,测得一塔塔顶和塔基的仰角分别是和,已知塔基高出地面,则塔身的高为_ 当堂检测(时量:5分钟 满分:10分)计分:1. 在ABC中,下列关系中一定成立的是( ).A BC D2. 在ABC中,AB=3,BC=,AC=4,则边AC上的高为( ).A B C

6、D3. D、C、B在地面同一直线上,DC=100米,从D、C两地测得A的仰角分别为和,则A点离地面的高AB等于( )米A100 BC50 D505. 在ABC中,且三角形有两解,则A的取值范围是 课后作业 1. 为测某塔AB的高度,在一幢与塔AB相距20m的楼的楼顶处测得塔顶A的仰角为30,测得塔基B的俯角为45,则塔AB的高度为多少m?2. 在平地上有A、B两点,A在山的正东,B在山的东南,且在A的南45西300米的地方,在A侧山顶的仰角是30,求山高.1.2.3应用举例测量角度 学习目标 能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题. 学习过程 一、课前准备复习1:

7、在中,已知,且,求.复习2:设的内角A,B,C的对边分别为a,b,c,且A=,求的值.二、新课导学 典型例题例1(课本15页例题). 如图,一艘海轮从A出发,沿北偏东75的方向航行67.5 n mile后到达海岛B,然后从B出发,沿北偏东32的方向航行54.0 n mile后达到海岛C.如果下次航行直接从A出发到达C,此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到0.1,距离精确到0.01n mile)例2. 某巡逻艇在A处发现北偏东45相距9海里的C处有一艘走私船,正沿南偏东75的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应该

8、沿什么方向去追?需要多少时间才追赶上该走私船? 动手试试练1. 甲、乙两船同时从B点出发,甲船以每小时10(1)km的速度向正东航行,乙船以每小时20km的速度沿南60东的方向航行,1小时后甲、乙两船分别到达A、C两点,求A、C两点的距离,以及在A点观察C点的方向角. 学习评价 当堂检测(时量:5分钟 满分:10分)计分:1. 从A处望B处的仰角为,从B处望A处的俯角为,则,的关系为( ).A B=C+= D+=2. 已知两线段,若以、为边作三角形,则边所对的角A的取值范围是( ).A BC D3. 关于的方程有相等实根,且A、B、C是的三个内角,则三角形的三边满足( ).A B C D4.

9、在三角形中,已知:A,a,b给出下列说法:(1)若A90,且ab,则此三角形不存在 (2)若A90,则此三角形最多有一解(3)若A90,且a=bsinA,则此三角形为直角三角形,且B=90(4)当A90,ab时三角形一定存在(5)当A90,且bsinAab时,三角形有两解其中正确说法的序号是 . 课后作业 1. 我舰在敌岛A南偏西相距12海里的B处,发现敌舰正由岛沿北偏西的方向以10海里/小时的速度航行.问我舰需以多大速度、沿什么方向航行才能用2小时追上敌舰?1.2.4应用举例解三角形 学习目标 1. 能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题;2. 掌握三角形的面积公式

10、的简单推导和应用; 学习过程 一、课前准备复习1:在ABC中(1)若,则等于 (2)若,则 _复习2:在中,则高BD= ,三角形面积= 二、新课导学 典型例题例1. 在ABC中,已知,则ABC的面积是 练2. 在ABC中,求证: 60021DCBAADBC例3. 如图,在四边形ABCD中,AC平分DAB,ABC=60,AC=7,AD=6,SADC=,求AB的长三、总结提升 学习小结1. 三角形面积公式:S=absinC= = 2. 证明三角形中的简单的恒等式方法:应用正弦定理或余弦定理,“边”化“角”或“角”化“边” 知识拓展三角形面积,这里,这就是著名的海伦公式 当堂检测(时量:5分钟 满分:10分)计分:1. 在中,则( ).A. B. C. D. 2. 三角形两边之差为2,夹角的正弦值为,面积为,那么这个三角形的两边长分别是( ).A. 3和5 B. 4和6 C. 6和8 D. 5和73. 在中,若,则一定是( )三角形A. 等腰 B. 直角 C. 等边 D. 等腰

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论