版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1利用运算律简便计算52(999)+49(999)+999正确的是A999(52+49)=999101=100899B999(52+491)=999100=99900C99
2、9(52+49+1)=999102=101898D999(52+4999)=9992=19982某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是( )ABCD3如图,数轴上的四个点A,B,C,D对应的数为整数,且ABBCCD1,若|a|+|b|2,则原点的位置可能是()AA或BBB或CCC或DDD或A4的绝对值是()ABCD5如图,直线y=kx+b与y轴交于点(0,3)、与x轴交于点(a,0),当a满足-3a0时,k的取值范围是( )A-1k1Dk111如图,为等边三角形,要在外部取一点,使得和全等,下面是两
3、名同学做法:( )甲:作的角平分线;以为圆心,长为半径画弧,交于点,点即为所求;乙:过点作平行于的直线;过点作平行于的直线,交于点,点即为所求A两人都正确B两人都错误C甲正确,乙错误D甲错误,乙正确12对于有理数x、y定义一种运算“”:xy=ax+by+c,其中a、b、c为常数,等式右边是通常的加法与乘法运算,已知35=15,47=28,则11的值为( )A-1B-11C1D11二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,一名滑雪运动员沿着倾斜角为34的斜坡,从A滑行至B,已知AB500米,则这名滑雪运动员的高度下降了_米(参考数据:sin340.56,cos340.83,
4、tan340.67)14一次函数与的图象如图,则的解集是_15某校准备从甲、乙、丙、丁四个科创小组中选出一组,参加区青少年科技创新大赛,表格反映的是各组平时成绩的平均数(单位:分)及方差S2,如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是_ 甲乙丙丁 7887s211.20.91.816已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为S甲2、S乙2,则S甲2_S乙2(填“”、“=”、“”)17甲、乙两人分别从A,B两地相向而行,他们距B地的距离s(km)与时间t(h)的关系如图所示,那么乙的速度是_km/h18如图,在平面直角坐标系中,矩形活动框架ABCD的长AB为2,
5、宽AD为,其中边AB在x轴上,且原点O为AB的中点,固定点A、B,把这个矩形活动框架沿箭头方向推,使D落在y轴的正半轴上点D处,点C的对应点C的坐标为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图所示,A、B两地之间有一条河,原来从A地到B地需要经过桥DC,沿折线ADCB到达,现在新建了桥EF(EF=DC),可直接沿直线AB从A地到达B地,已知BC=12km,A=45,B=30,桥DC和AB平行(1)求桥DC与直线AB的距离;(2)现在从A地到达B地可比原来少走多少路程?(以上两问中的结果均精确到0.1km,参考数据:1.14,1.73)20
6、(6分)如图,O是ABC的外接圆,AE平分BAC交O于点E,交BC于点D,过点E做直线lBC(1)判断直线l与O的位置关系,并说明理由;(2)若ABC的平分线BF交AD于点F,求证:BE=EF;(3)在(2)的条件下,若DE=4,DF=3,求AF的长21(6分)如图所示,PB是O的切线,B为切点,圆心O在PC上,P=30,D为弧BC的中点.(1)求证:PB=BC;(2)试判断四边形BOCD的形状,并说明理由.22(8分)如图,为的直径,为上一点,过点作的弦,设(1)若时,求、的度数各是多少?(2)当时,是否存在正实数,使弦最短?如果存在,求出的值,如果不存在,说明理由;(3)在(1)的条件下,
7、且,求弦的长23(8分)中华文化,源远流长,在文学方面,西游记、三国演义、水浒传、红楼梦是我国古代长篇小说中的典型代表,被称为“四大古典名著”某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如图所示的两个不完整的统计图,请结合图中信息解决下列问题:(1)本次调查了 名学生,扇形统计图中“1部”所在扇形的圆心角为 度,并补全条形统计图;(2)此中学共有1600名学生,通过计算预估其中4部都读完了的学生人数;(3)没有读过四大古典名著的两名学生准备从四大固定名著中各自随机选择一部来阅读,求他们选中同一名著的概率24(10
8、分)如图,中,于,点分别是的中点.(1)求证:四边形是菱形(2)如果,求四边形的面积25(10分)解下列不等式组:26(12分)如图,已知函数(x0)的图象经过点A、B,点B的坐标为(2,2)过点A作ACx轴,垂足为C,过点B作BDy轴,垂足为D,AC与BD交于点F一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点E若AC=OD,求a、b的值;若BCAE,求BC的长27(12分) “食品安全”受到全社会的广泛关注,我区兼善中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面的两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问
9、题:(1)接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 ;(2)请补全条形统计图;(3)若对食品安全知识达到“了解”程度的学生中,男、女生的比例恰为2:3,现从中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】根据乘法分配律和有理数的混合运算法则可以解答本题【详解】原式=999(52+49-1)=999100=1故选B【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法2
10、、B【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案【详解】画树状图如下:由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,所以佳佳和琪琪恰好从同一个入口进入该公园的概率为,故选B【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件注意概率=所求情况数与总情况数之比3、B【解析】根据AB=BC=CD=1,|a|+|b|=2,分四种情况进行讨
11、论判断即可【详解】ABBCCD1,当点A为原点时,|a|+|b|2,不合题意;当点B为原点时,|a|+|b|2,符合题意;当点C为原点时,|a|+|b|2,符合题意;当点D为原点时,|a|+|b|2,不合题意;故选:B【点睛】此题主要考查了数轴以及绝对值,解题时注意:数轴上某个数与原点的距离叫做这个数的绝对值4、C【解析】根据负数的绝对值是它的相反数,可得答案【详解】-=,A错误;-=,B错误;=,D错误;=,故选C.【点睛】本题考查了绝对值,解题的关键是掌握绝对值的概念进行解题.5、C【解析】解:把点(0,2)(a,0)代入y=kx+b,得b=2则a=-3k,-3a0,-3-3k.【点睛】本
12、题考查的知识点是方差,算术平均数,折线统计图,解题的关键是熟练的掌握方差,算术平均数,折线统计图.17、3.6【解析】分析:根据题意,甲的速度为6km/h,乙出发后2.5小时两人相遇,可以用方程思想解决问题详解:由题意,甲速度为6km/h当甲开始运动时相距36km,两小时后,乙开始运动,经过2.5小时两人相遇设乙的速度为xkm/h4.56+2.5x=36解得x=3.6故答案为3.6点睛:本题为一次函数实际应用问题,考查一次函数图象在实际背景下所代表的意义解答这类问题时,也可以通过构造方程解决问题18、(2,1)【解析】由已知条件得到AD=AD=,AO=AB=1,根据勾股定理得到OD=1,于是得
13、到结论【详解】解: AD=AD=,AO=AB=1,OD=1,CD=2,CDAB,C(2,1),故答案为:(2,1)【点睛】本题考查了矩形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)桥DC与直线AB的距离是6.0km;(2)现在从A地到达B地可比原来少走的路程是4.1km【解析】(1)过C向AB作垂线构建三角形,求出垂线段的长度即可;(2)过点D向AB作垂线,然后根据解三角形求出AD, CB的长,进而求出现在从A地到达B地可比原来少走的路程.【详解】解:(1)作CHAB于点H,如图所示,
14、BC=12km,B=30,km,BH=km,即桥DC与直线AB的距离是6.0km;(2)作DMAB于点M,如图所示,桥DC和AB平行,CH=6km,DM=CH=6km,DMA=90,B=45,MH=EF=DC,AD=km,AM=DM=6km,现在从A地到达B地可比原来少走的路程是:(AD+DC+BC)(AM+MH+BH)=AD+DC+BCAMMHBH=AD+BCAMBH=km,即现在从A地到达B地可比原来少走的路程是4.1km【点睛】做辅助线,构建直角三角形,根据边角关系解三角形,是解答本题的关键.20、(1)直线l与O相切;(2)证明见解析;(3)214【解析】试题分析:(1)连接OE、OB
15、、OC由题意可证明BE=CE,于是得到BOE=COE,由等腰三角形三线合一的性质可证明OEBC,于是可证明OEl,故此可证明直线l与O相切;(2)先由角平分线的定义可知ABF=CBF,然后再证明CBE=BAF,于是可得到EBF=EFB,最后依据等角对等边证明BE=EF即可;(3)先求得BE的长,然后证明BEDAEB,由相似三角形的性质可求得AE的长,于是可得到AF的长试题解析:(1)直线l与O相切理由如下:如图1所示:连接OE、OB、OCAE平分BAC,BAE=CAEBE=CEBOE=COE又OB=OC,OEBClBC,OEl直线l与O相切(2)BF平分ABC,ABF=CBF又CBE=CAE=
16、BAE,CBE+CBF=BAE+ABF又EFB=BAE+ABF,EBF=EFBBE=EF(3)由(2)得BE=EF=DE+DF=1DBE=BAE,DEB=BEA,BEDAEBDEBE=BEAE,即47=7AE,解得;AE=494,AF=AEEF=4941=214考点:圆的综合题21、(1)见解析;(2)菱形【解析】试题分析:(1)由切线的性质得到OBP=90,进而得到BOP=60,由OC=BO,得到OBC=OCB=30,由等角对等边即可得到结论;(2)由对角线互相垂直平分的四边形是菱形证明即可试题解析:证明:(1)PB是O的切线,OBP=90,POB=90-30=60OB=OC,OBC=OCB
17、POB=OBC+OCB,OCB=30=P,PB=BC;(2)连接OD交BC于点MD是弧BC的中点,OD垂直平分BC在直角OMC中,OCM=30,OC=2OM=OD,OM=DM,四边形BOCD是菱形22、(1), ;(2)见解析;(3)【解析】(1)连结AD、BD,利用m求出角的关系进而求出BCD、ACD的度数;(2)连结,由所给关系式结合直径求出AP,OP,根据弦CD最短,求出BCD、ACD的度数,即可求出m的值(3)连结AD、BD,先求出AD,BD,AP,BP的长度,利用APCDPB和CPBAPD得出比例关系式,得出比例关系式结合勾股定理求出CP,PD,即可求出CD【详解】解:(1)如图1,
18、连结、是的直径, 又, (2)如图2,连结,则,解得要使最短,则于,故存在这样的值,且;(3)如图3,连结、由(1)可得,同理,由得,由得,在中,由,得,【点睛】本题考查了相似三角形的判定与性质和锐角三角函数关系和圆周角定理等知识,掌握圆周角定理以及垂径定理是解题的关键23、(1)40、126(2)240人(3) 【解析】(1)用2部的人数10除以2部人数所占的百分比25即可求出本次调查的学生数,根据扇形圆心角的度数=部分占总体的百分比360,即可得到“1部”所在扇形的圆心角;(2)用1600乘以4部所占的百分比即可;(3)根据树状图所得的结果,判断他们选中同一名著的概率【详解】(1)调查的总
19、人数为:1025%=40,1部对应的人数为4021086=14,则扇形统计图中“1部”所在扇形的圆心角为:360=126;故答案为40、126;(2)预估其中4部都读完了的学生有1600=240人;(3)将西游记、三国演义、水浒传、红楼梦分别记作A,B,C,D,画树状图可得:共有16种等可能的结果,其中选中同一名著的有4种,故P(两人选中同一名著)=【点睛】本题考查了扇形统计图和条形统计图的综合,用样本估计总体,列表法或树状图法求概率.解答此类题目,要善于发现二者之间的关联点,即两个统计图都知道了哪个量的数据,从而用条形统计图中的具体数量除以扇形统计图中占的百分比,求出样本容量,进而求解其它未
20、知的量.24、 (1)证明见解析;(2).【解析】(1)先根据直角三角形斜边上中线的性质,得出DE=AB=AE,DF=AC=AF,再根据AB=AC,点E、F分别是AB、AC的中点,即可得到AE=AF=DE=DF,进而判定四边形AEDF是菱形;(2)根据等边三角形的性质得出EF=5,AD=5,进而得到菱形AEDF的面积S【详解】解:(1)ADBC,点E、F分别是AB、AC的中点,RtABD中,DE=AB=AE,RtACD中,DF=AC=AF,又AB=AC,点E、F分别是AB、AC的中点,AE=AF,AE=AF=DE=DF,四边形AEDF是菱形;(2)如图,AB=AC=BC=10,EF=5,AD=
21、5,菱形AEDF的面积S=EFAD55【点睛】本题考查菱形的判定与性质的运用,解题时注意:四条边相等的四边形是菱形;菱形的面积等于对角线长乘积的一半25、2x【解析】先分别求出两个不等式的解集,再求其公共解【详解】,解不等式得,x,解不等式得,x2,则不等式组的解集是2x【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)26、(1)a=,b=2;(2)BC=【解析】试题分析:(1)首先利用反比例函数图象上点的坐标性质得出k的值,再得出A、D点坐标,进而求出a,b的值;(2)设A点的坐标为:(m,),则C点的坐标为:(m,0),得出tanADF=,tanAEC=,进
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度专利实施许可及技术转让合同2篇
- 足疗店技师合作协议1
- 医药销售协议
- 科普知识课件
- 国际磋商2024年度市场准入条件
- 2024版钢筋混凝土施工安全防护用品采购合同3篇
- 激励高二的教学课件教学课件教学
- 挖掘机买卖合同书范本
- 配电自动化系统设计与实施2024年度合同
- 个人承包2024年度库房消防演练合同3篇
- N2000色谱工作站操作说明书
- 战略销售蓝表-中文版
- MSA - AIAG Manual--d2表
- 自动化系统现场运行管理规定
- 欧盟最新农残标准
- 现代小说选读:鲁迅《风波》.ppt
- 河大版信息技术小学四年级上册教案全册
- 空调管道施工方案-
- 药学科研选题及实践经验PPT课件
- 随访平台解决方案.docx
- 二层式升降横移自动立体车库结构设计(机械CAD图纸)
评论
0/150
提交评论