版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1|3|()ABC3D32青藏高原是世界上海拔最高的高原,它的面积是 2500000 平方千米将 2500000 用科学记数法表示应为( )ABCD3如图图形中,可以看作中心对称图形的是()ABCD4九章算术是中国传统数学的重要著
2、作,方程术是它的最高成就其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是( )ABCD5在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A众数是5B中位数是5C平均数是6D方差是3.66如果关于x的一元二次方程k2x2-(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是( )AkBk且Ck3xa的整数解共有三个,则a的取值范围是()A5a6B5a6C5a6D5
3、a68将函数的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是( )A向左平移1个单位B向右平移3个单位C向上平移3个单位D向下平移1个单位9下列运算正确的是()Aa3a=2aB(ab2)0=ab2C=D=910若抛物线ykx22x1与x轴有两个不同的交点,则k的取值范围为()Ak1Bk1Ck1且k0Dk1且k0二、填空题(本大题共6个小题,每小题3分,共18分)11计算:2sin245tan45_12如图,ABC中,ABBD,点D,E分别是AC,BD上的点,且ABDDCE,若BEC105,则A的度数是_13如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m水面下降2.5m,水面宽
4、度增加_m14如图所示,ABC的顶点是正方形网格的格点,则sinA的值为_15口袋中装有4个小球,其中红球3个,黄球1个,从中随机摸出两球,都是红球的概率为_16如图,直线yx2与反比例函数y的图象在第一象限交于点P.若OP,则k的值为_ 三、解答题(共8题,共72分)17(8分)已知抛物线y=x2+bx+c经过点A(0,6),点B(1,3),直线l1:y=kx(k0),直线l2:y=-x-2,直线l1经过抛物线y=x2+bx+c的顶点P,且l1与l2相交于点C,直线l2与x轴、y轴分别交于点D、E.若把抛物线上下平移,使抛物线的顶点在直线l2上(此时抛物线的顶点记为M),再把抛物线左右平移,
5、使抛物线的顶点在直线l1上(此时抛物线的顶点记为N)(1)求抛物y=x2+bx+c线的解析式(2)判断以点N为圆心,半径长为4的圆与直线l2的位置关系,并说明理由(3)设点F、H在直线l1上(点H在点F的下方),当MHF与OAB相似时,求点F、H的坐标(直接写出结果)18(8分)已知,关于x的方程x2mx+m210,(1)不解方程,判断此方程根的情况;(2)若x2是该方程的一个根,求m的值19(8分)如图1,已知扇形MON的半径为,MON=90,点B在弧MN上移动,联结BM,作ODBM,垂足为点D,C为线段OD上一点,且OC=BM,联结BC并延长交半径OM于点A,设OA=x,COM的正切值为y
6、.(1)如图2,当ABOM时,求证:AM=AC;(2)求y关于x的函数关系式,并写出定义域;(3)当OAC为等腰三角形时,求x的值.20(8分)已知关于x的一元二次方程x2(2k+1)x+k2+k1(1)求证:方程有两个不相等的实数根;(2)当方程有一个根为1时,求k的值21(8分)为改善生态环境,防止水土流失,某村计划在荒坡上种1000棵树由于青年志愿者的支援,每天比原计划多种25%,结果提前5天完成任务,原计划每天种多少棵树?22(10分)规定:不相交的两个函数图象在竖直方向上的最短距离为这两个函数的“亲近距离”(1)求抛物线yx22x+3与x轴的“亲近距离”;(2)在探究问题:求抛物线y
7、x22x+3与直线yx1的“亲近距离”的过程中,有人提出:过抛物线的顶点向x轴作垂线与直线相交,则该问题的“亲近距离”一定是抛物线顶点与交点之间的距离,你同意他的看法吗?请说明理由(3)若抛物线yx22x+3与抛物线y+c的“亲近距离”为,求c的值23(12分) 如图,已知正方形ABCD,E是AB延长线上一点,F是DC延长线上一点,且满足BFEF,将线段EF绕点F顺时针旋转90得FG,过点B作FG的平行线,交DA的延长线于点N,连接NG求证:BE2CF;试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明24如图,ABCD的边CD为斜边向内作等腰直角CDE,使AD=DE=CE,DEC=
8、90,且点E在平行四边形内部,连接AE、BE,求AEB的度数参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】根据绝对值的定义解答即可.【详解】|-3|=3故选:C【点睛】本题考查的是绝对值,理解绝对值的定义是关键.2、C【解析】分析:在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便解答:解:根据题意:2500000=2.51故选C3、D【解析】根据 把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可【详解】解:A、不是中心对称图形,故此选项不合题意;B、不是中心对称图
9、形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意;故选D【点睛】此题主要考查了中心对称图形,关键掌握中心对称图形定义4、C【解析】【分析】分析题意,根据“每人出8钱,会多3钱;每人出7钱,又会差4钱,”可分别列出方程.【详解】设合伙人数为x人,物价为y钱,根据题意得故选C【点睛】本题考核知识点:列方程组解应用题.解题关键点:找出相等关系,列出方程.5、D【解析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可【详解】A、数据中5出现2次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均
10、数为(7+5+3+5+10)5=6,此选项正确;D、方差为(76)2+(56)22+(36)2+(106)2=5.6,此选项错误;故选:D【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大6、B【解析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有两个实数根下必须满足=b2-4ac1【详解】由题意知,k1,方程有两个不相等的实数根,所以1,=b2-4ac=(2k+1)2-4k2=4k+11因此可求得k且k1故选B【点睛】本题考查根据根的情况求参数,熟记判别式与根的关系是解题的关键.
11、7、C【解析】首先确定不等式组的解集,利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围【详解】解不等式组得:2xa,不等式组的整数解共有3个,这3个是3,4,5,因而5a1故选C【点睛】本题考查了一元一次不等式组的整数解,正确解出不等式组的解集,确定a的范围,是解答本题的关键求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了8、D【解析】A.平移后,得y=(x+1)2,图象经过A点,故A不符合题意;B.平移后,得y=(x3)2,图象经过A点,故B不符合题意;C.平移后,得y=x2+3,图象经过
12、A点,故C不符合题意;D.平移后,得y=x21图象不经过A点,故D符合题意;故选D.9、D【解析】直接利用合并同类项法则以及二次根式的性质、二次根式乘法、零指数幂的性质分别化简得出答案【详解】解:A、a3a=2a,故此选项错误;B、(ab2)0=1,故此选项错误;C、故此选项错误;D、=9,正确故选D【点睛】此题主要考查了合并同类项以及二次根式的性质、二次根式乘法、零指数幂的性质,正确把握相关性质是解题关键10、C【解析】根据抛物线ykx22x1与x轴有两个不同的交点,得出b24ac0,进而求出k的取值范围【详解】二次函数ykx22x1的图象与x轴有两个交点,b24ac(2)24k(1)4+4
13、k0,k1,抛物线ykx22x1为二次函数,k0,则k的取值范围为k1且k0,故选C.【点睛】本题考查了二次函数yax2+bx+c的图象与x轴交点的个数的判断,熟练掌握抛物线与x轴交点的个数与b2-4ac的关系是解题的关键.注意二次项系数不等于0.二、填空题(本大题共6个小题,每小题3分,共18分)11、0【解析】原式=0,故答案为0.12、85【解析】设A=BDA=x,ABD=ECD=y,构建方程组即可解决问题【详解】解:BABD,ABDA,设ABDAx,ABDECDy,则有,解得x85,故答案为85【点睛】本题考查等腰三角形的性质,三角形的外角的性质,三角形的内角和定理等知识,解题的关键是
14、熟练掌握基本知识,属于中考常考题型13、1.【解析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把y=-1.5代入抛物线解析式得出水面宽度,即可得出答案【详解】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半1米,抛物线顶点C坐标为(0,1),设顶点式y=ax1+1,把A点坐标(-1,0)代入得a=-0.5,抛物线解析式为y=-0.5x1+1,当水面下降1.5米,通过抛物线在图上的观察可转化为:当y=-1.5时,对应的抛物线上两点之间的距离,也就是直线y=-1与
15、抛物线相交的两点之间的距离,可以通过把y=-1.5代入抛物线解析式得出:-1.5=-0.5x1+1,解得:x=3,13-4=1,所以水面下降1.5m,水面宽度增加1米故答案为1【点睛】本题考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键,学会把实际问题转化为二次函数,利用二次函数的性质解决问题,属于中考常考题型14、【解析】解:连接CE,根据图形可知DC=1,AD=3,AC=,BE=CE=,EBC=ECB=45,CEAB,sinA=,故答案为考点:勾股定理;三角形的面积;锐角三角函数的定义15、【解析】先画出树状图,用随意摸出两个球是红球的结果个数除以所有可能的结
16、果个数即可.【详解】从中随意摸出两个球的所有可能的结果个数是12,随意摸出两个球是红球的结果个数是6,从中随意摸出两个球的概率=;故答案为:.【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比16、1【解析】设点P(m,m+2),OP=, =,解得m1=1,m2=1(不合题意舍去),点P(1,1),1=,解得k=1点睛:本题考查了反比例函数与一次函数的交点坐标,仔细审题,能够求得点P的坐标是解题的关键三、解答题(
17、共8题,共72分)17、(1);(2)以点为圆心,半径长为4的圆与直线相离;理由见解析;(3)点、的坐标分别为、或、或、.【解析】(1)分别把A,B点坐标带入函数解析式可求得b,c即可得到二次函数解析式(2)先求出顶点的坐标,得到直线解析式,再分别求得MN的坐标,再求出NC比较其与4的大小可得圆与直线的位置关系.(3)由题得出tanBAO=,分情况讨论求得F,H坐标.【详解】(1)把点、代入得, 解得, 抛物线的解析式为. (2)由得,顶点的坐标为, 把代入得解得,直线解析式为,设点,代入得,得,设点,代入得,得,由于直线与轴、轴分别交于点、易得、,,点在直线上,即, , 以点为圆心,半径长为
18、4的圆与直线相离. (3)点、的坐标分别为、或、或、.C(-1,-1),A(0,6),B(1,3)可得tanBAO=,情况1:tanCF1M= = , CF1=9,M F1=6,H1F1=5, F1(8,8),H1(3,3);情况2:F2(-5,-5), H2(-10,-10)(与情况1关于L2对称);情况3:F3(8,8), H3(-10,-10)(此时F3与F1重合,H3与H2重合).【点睛】本题考查的知识点是二次函数综合题,解题的关键是熟练的掌握二次函数综合题.18、(1)证明见解析;(2)m=2或m=1【解析】(1)由=(-m)2-41(m2-1)=40即可得;(2)将x=2代入方程得
19、到关于m的方程,解之可得【详解】(1)=(m)241(m21)=m2m2+4=40,方程有两个不相等的实数根;(2)将x=2代入方程,得:42m+m21=0,整理,得:m28m+12=0,解得:m=2或m=1【点睛】本题考查了根的判别式以及解一元二次方程,解题的关键是:(1)牢记“当0时,方程有两个不相等的实数根”;(2)将x=2代入原方程求出m值19、(1)证明见解析;(2) .();(3) .【解析】分析:(1)先判断出ABM=DOM,进而判断出OACBAM,即可得出结论;(2)先判断出BD=DM,进而得出,进而得出AE=,再判断出,即可得出结论;(3)分三种情况利用勾股定理或判断出不存在
20、,即可得出结论详解:(1)ODBM,ABOM,ODM=BAM=90ABM+M=DOM+M,ABM=DOMOAC=BAM,OC=BM,OACBAM, AC=AM(2)如图2,过点D作DEAB,交OM于点EOB=OM,ODBM,BD=DMDEAB,AE=EMOM=,AE=DEAB, ()(3)(i) 当OA=OC时在RtODM中,解得,或(舍)(ii)当AO=AC时,则AOC=ACOACOCOB,COB=AOC,ACOAOC,此种情况不存在()当CO=CA时,则COA=CAO=CAOM,M=90,90,45,BOA=290BOA90,此种情况不存在即:当OAC为等腰三角形时,x的值为点睛:本题是圆
21、的综合题,主要考查了相似三角形的判定和性质,圆的有关性质,勾股定理,等腰三角形的性质,建立y关于x的函数关系式是解答本题的关键20、(2)证明见解析;(2)k22,k22【解析】(2)套入数据求出b24ac的值,再与2作比较,由于22,从而证出方程有两个不相等的实数根;(2)将x2代入原方程,得出关于k的一元二次方程,解方程即可求出k的值【详解】(2)证明:b24ac,(2k+2)24(k2+k),4k2+4k+24k24k,22方程有两个不相等的实数根;(2)方程有一个根为2,22(2k+2)+k2+k2,即k2k2,解得:k22,k22【点睛】本题考查了根的判别式以及解一元二次方程,解题的
22、关键是:(2)求出b24ac的值;(2)代入x2得出关于k的一元二次方程本题属于基础题,难度不大,解决该题型题目时,由根的判别式来判断实数根的个数是关键21、原计划每天种树40棵【解析】设原计划每天种树x棵,实际每天植树(1+25%)x棵,根据实际完成的天数比计划少5天为等量关系建立方程求出其解即可【详解】设原计划每天种树x棵,实际每天植树(1+25%)x棵,由题意,得=5,解得:x=40,经检验,x=40是原方程的解.答:原计划每天种树40棵.22、(1)2;(2)不同意他的看法,理由详见解析;(3)c1【解析】(1)把y=x22x+3配成顶点式得到抛物线上的点到x轴的最短距离,然后根据题意
23、解决问题;(2)如图,P点为抛物线y=x22x+3任意一点,作PQy轴交直线y=x1于Q,设P(t,t22t+3),则Q(t,t1),则PQ=t22t+3(t1),然后利用二次函数的性质得到抛物线y=x22x+3与直线y=x1的“亲近距离”,然后对他的看法进行判断;(3)M点为抛物线y=x22x+3任意一点,作MNy轴交抛物线于N,设M(t,t22t+3),则N(t,t2+c),与(2)方法一样得到MN的最小值为c,从而得到抛物线y=x22x+3与抛物线的“亲近距离”,所以,然后解方程即可【详解】(1)y=x22x+3=(x1)2+2,抛物线上的点到x轴的最短距离为2,抛物线y=x22x+3与
24、x轴的“亲近距离”为:2;(2)不同意他的看法理由如下:如图,P点为抛物线y=x22x+3任意一点,作PQy轴交直线y=x1于Q,设P(t,t22t+3),则Q(t,t1),PQ=t22t+3(t1)=t23t+4=(t)2+,当t=时,PQ有最小值,最小值为,抛物线y=x22x+3与直线y=x1的“亲近距离”为,而过抛物线的顶点向x轴作垂线与直线相交,抛物线顶点与交点之间的距离为2,不同意他的看法;(3)M点为抛物线y=x22x+3任意一点,作MNy轴交抛物线于N,设M(t,t22t+3),则N(t,t2+c),MN=t22t+3(t2+c)=t22t+3c=(t)2+c,当t=时,MN有最小值,最小值为c,抛物线y=x22x+3与抛物线的“亲近距离”为c,c=1【点睛】本题是二次函数的综合题,考查了二次函数图象上点的坐标特征和二次函数的性质,正确理解新定义是解题的关键23、(1)见解析;(2)四边形BFGN是菱形,理由见解析.【解析】(1)过F作FHBE于点H,可证明四边形BCFH为矩形,可得到BHCF,且H为BE中点,可得BE2CF;(2)由条件可证明ABNHFE,可得BNEF,可得到BNGF,且BNFG,可证
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 淮阴师范学院《酒店人力资源管理》2023-2024学年第一学期期末试卷
- 淮阴师范学院《计算机组成原理》2022-2023学年期末试卷
- 黄山学院《查性报道》2022-2023学年第一学期期末试卷
- 淮阴师范学院《移动开发技术》2022-2023学年期末试卷
- 淮阴师范学院《消费者行为学》2022-2023学年第一学期期末试卷
- 淮阴师范学院《钢琴即兴弹唱(1)》2022-2023学年第一学期期末试卷
- 淮阴工学院《食品市场营销学》2021-2022学年第一学期期末试卷
- DB6103-T 74-2024高山生菜生产技术规范
- DB3711-T 154-2024茶园土壤酸化改良技术规程
- DB65T4818-2024番茄潜叶蛾监测技术规程
- 立体构成的基本要素及形式美法则备课讲稿课件
- 广东省房屋建筑工程概算定额说明及计算规则样本
- 汽车文化知识考试参考题库400题(含答案)
- WDZANYJY23低压电力电缆技术规格书
- 《水循环》-完整版课件
- 抗高血压药物基因检测课件
- 西游记 品味经典名著导读PPT
- 金坛区苏科版四年级心理健康教育第1课《我的兴趣爱好》课件(定稿)
- 心肌缺血和心肌梗死的心电图表现讲义课件
- 学历案的编写课件
- 旅游行政管理第二章旅游行政管理体制课件
评论
0/150
提交评论